Matches in SemOpenAlex for { <https://semopenalex.org/work/W2517323218> ?p ?o ?g. }
- W2517323218 endingPage "274" @default.
- W2517323218 startingPage "260" @default.
- W2517323218 abstract "The objectives of this comparison of two biophysical models of nitrogen losses were to evaluate first whether results were similar and second whether both were equally practical for use by non-scientist users. Results were obtained with the crop model STICS and the environmental model AGRIFLUX based on nitrogen loss simulations across a small groundwater catchment area (<1 km2) located in the Lorraine region in France. Both models simulate the influences of leaching and cropping systems on nitrogen losses in a relevant manner. The authors conclude that limiting the simulations to areas where soils with a greater risk of leaching cover a significant spatial extent would likely yield acceptable results because those soils have more predictable leaching of nitrogen. In addition, the choice of an environmental model such as AGRIFLUX which requires fewer parameters and input variables seems more user-friendly for agro-environmental assessment. The authors then discuss additional challenges for non-scientists such as lack of parameter optimization, which is essential to accurately assessing nitrogen fluxes and indirectly not to limit the diversity of uses of simulated results. Despite current restrictions, with some improvement, biophysical models could become useful environmental assessment tools for non-scientists." @default.
- W2517323218 created "2016-09-16" @default.
- W2517323218 creator A5041001182 @default.
- W2517323218 creator A5050307015 @default.
- W2517323218 creator A5080773335 @default.
- W2517323218 creator A5085436518 @default.
- W2517323218 date "2016-12-01" @default.
- W2517323218 modified "2023-10-07" @default.
- W2517323218 title "Using biophysical models to manage nitrogen pollution from agricultural sources: Utopic or realistic approach for non-scientist users? Case study of a drinking water catchment area in Lorraine, France" @default.
- W2517323218 cites W1544989414 @default.
- W2517323218 cites W1587485253 @default.
- W2517323218 cites W1607294169 @default.
- W2517323218 cites W1731711897 @default.
- W2517323218 cites W1963507870 @default.
- W2517323218 cites W1967232404 @default.
- W2517323218 cites W1968241089 @default.
- W2517323218 cites W1972034227 @default.
- W2517323218 cites W1973245274 @default.
- W2517323218 cites W1982706863 @default.
- W2517323218 cites W1987122778 @default.
- W2517323218 cites W1991493286 @default.
- W2517323218 cites W1995539799 @default.
- W2517323218 cites W1997960297 @default.
- W2517323218 cites W2005373954 @default.
- W2517323218 cites W2014138882 @default.
- W2517323218 cites W2014477418 @default.
- W2517323218 cites W2023716221 @default.
- W2517323218 cites W2026875667 @default.
- W2517323218 cites W2033345335 @default.
- W2517323218 cites W2035161269 @default.
- W2517323218 cites W2036444379 @default.
- W2517323218 cites W2038397967 @default.
- W2517323218 cites W2041784188 @default.
- W2517323218 cites W2042396358 @default.
- W2517323218 cites W2045277891 @default.
- W2517323218 cites W2047684158 @default.
- W2517323218 cites W2053016487 @default.
- W2517323218 cites W2058033757 @default.
- W2517323218 cites W2058466438 @default.
- W2517323218 cites W2060307237 @default.
- W2517323218 cites W2062235286 @default.
- W2517323218 cites W2065302238 @default.
- W2517323218 cites W2066295877 @default.
- W2517323218 cites W2067522574 @default.
- W2517323218 cites W2069612583 @default.
- W2517323218 cites W2071605829 @default.
- W2517323218 cites W2074430813 @default.
- W2517323218 cites W2075249627 @default.
- W2517323218 cites W2075648393 @default.
- W2517323218 cites W2075974482 @default.
- W2517323218 cites W2076936964 @default.
- W2517323218 cites W2077849527 @default.
- W2517323218 cites W2078435612 @default.
- W2517323218 cites W2081078943 @default.
- W2517323218 cites W2085446849 @default.
- W2517323218 cites W2087567567 @default.
- W2517323218 cites W2096234823 @default.
- W2517323218 cites W2097071540 @default.
- W2517323218 cites W2097257700 @default.
- W2517323218 cites W2107021431 @default.
- W2517323218 cites W2110648169 @default.
- W2517323218 cites W2123984994 @default.
- W2517323218 cites W2127470579 @default.
- W2517323218 cites W2146323422 @default.
- W2517323218 cites W2149793604 @default.
- W2517323218 cites W2154340158 @default.
- W2517323218 cites W2156234464 @default.
- W2517323218 doi "https://doi.org/10.1016/j.jenvman.2016.08.050" @default.
- W2517323218 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27596940" @default.
- W2517323218 hasPublicationYear "2016" @default.
- W2517323218 type Work @default.
- W2517323218 sameAs 2517323218 @default.
- W2517323218 citedByCount "3" @default.
- W2517323218 countsByYear W25173232182018 @default.
- W2517323218 countsByYear W25173232182022 @default.
- W2517323218 crossrefType "journal-article" @default.
- W2517323218 hasAuthorship W2517323218A5041001182 @default.
- W2517323218 hasAuthorship W2517323218A5050307015 @default.
- W2517323218 hasAuthorship W2517323218A5080773335 @default.
- W2517323218 hasAuthorship W2517323218A5085436518 @default.
- W2517323218 hasConcept C108215451 @default.
- W2517323218 hasConcept C118518473 @default.
- W2517323218 hasConcept C121332964 @default.
- W2517323218 hasConcept C127413603 @default.
- W2517323218 hasConcept C13558536 @default.
- W2517323218 hasConcept C144237770 @default.
- W2517323218 hasConcept C159390177 @default.
- W2517323218 hasConcept C159750122 @default.
- W2517323218 hasConcept C187320778 @default.
- W2517323218 hasConcept C188198153 @default.
- W2517323218 hasConcept C18903297 @default.
- W2517323218 hasConcept C33923547 @default.
- W2517323218 hasConcept C39432304 @default.
- W2517323218 hasConcept C521259446 @default.
- W2517323218 hasConcept C537208039 @default.
- W2517323218 hasConcept C62520636 @default.
- W2517323218 hasConcept C76177295 @default.
- W2517323218 hasConcept C76886044 @default.