Matches in SemOpenAlex for { <https://semopenalex.org/work/W2517474133> ?p ?o ?g. }
- W2517474133 abstract "Quantitative trading strategies are designed to look for relationships between data about an underlying security and its future price and then to generate alpha on a trading desk. Recent years have witnessed the increasing attention from both academic and corporate sectors on enhancing quantitative trading by machine learning techniques due to their excellent predictive powers, with a few successful stories from the markets further boosting optimism for this method of analysis. In this paper, we aim to conduct a comprehensive survey on the pilot study of applying machine learning for quantitative trading. We will review some earlier studies of using NNs and SVMs for stock price prediction. We will also touch some recent studies on designing online learning algorithms based on characteristics of financial time series, e.g., mean reversion of stock price. Another application of machine learning in quantitative trading is called meta-learning algorithm which considers how to assign weights to strategies. We will finally summarize the above research by pointing out promising machine learning techniques for different categories of trading strategies. We will also discuss slightly the potentials of machine learning techniques in helping generate strategies that do not only base on financial market data, like behavioral strategy, event-driven and untraditional index strategy." @default.
- W2517474133 created "2016-09-16" @default.
- W2517474133 creator A5035293475 @default.
- W2517474133 creator A5057521182 @default.
- W2517474133 creator A5058432859 @default.
- W2517474133 date "2016-06-01" @default.
- W2517474133 modified "2023-09-28" @default.
- W2517474133 title "When quantitative trading meets machine learning: A pilot survey" @default.
- W2517474133 cites W1545298045 @default.
- W2517474133 cites W1571056922 @default.
- W2517474133 cites W1574219543 @default.
- W2517474133 cites W1582504559 @default.
- W2517474133 cites W190329114 @default.
- W2517474133 cites W1964964840 @default.
- W2517474133 cites W1968380673 @default.
- W2517474133 cites W1970411806 @default.
- W2517474133 cites W1970872742 @default.
- W2517474133 cites W1974696541 @default.
- W2517474133 cites W1983220355 @default.
- W2517474133 cites W2012079387 @default.
- W2517474133 cites W2014583745 @default.
- W2517474133 cites W2015174807 @default.
- W2517474133 cites W2017537474 @default.
- W2517474133 cites W2019359248 @default.
- W2517474133 cites W2025963737 @default.
- W2517474133 cites W2046026724 @default.
- W2517474133 cites W2048658075 @default.
- W2517474133 cites W2052466350 @default.
- W2517474133 cites W2054337296 @default.
- W2517474133 cites W2058840707 @default.
- W2517474133 cites W2065809795 @default.
- W2517474133 cites W2076237339 @default.
- W2517474133 cites W2081737938 @default.
- W2517474133 cites W2097152068 @default.
- W2517474133 cites W2103579629 @default.
- W2517474133 cites W2106052345 @default.
- W2517474133 cites W2106658060 @default.
- W2517474133 cites W2111556359 @default.
- W2517474133 cites W2120224355 @default.
- W2517474133 cites W2139328970 @default.
- W2517474133 cites W2149312065 @default.
- W2517474133 cites W2153686960 @default.
- W2517474133 cites W2156909104 @default.
- W2517474133 cites W2158100334 @default.
- W2517474133 cites W2166030975 @default.
- W2517474133 cites W2187195344 @default.
- W2517474133 cites W2263122457 @default.
- W2517474133 cites W2271895222 @default.
- W2517474133 cites W2298168480 @default.
- W2517474133 cites W2354393230 @default.
- W2517474133 cites W2364329840 @default.
- W2517474133 cites W2949524771 @default.
- W2517474133 cites W2950932906 @default.
- W2517474133 cites W3015581296 @default.
- W2517474133 cites W3152465357 @default.
- W2517474133 cites W55850196 @default.
- W2517474133 doi "https://doi.org/10.1109/icsssm.2016.7538632" @default.
- W2517474133 hasPublicationYear "2016" @default.
- W2517474133 type Work @default.
- W2517474133 sameAs 2517474133 @default.
- W2517474133 citedByCount "1" @default.
- W2517474133 countsByYear W25174741332020 @default.
- W2517474133 crossrefType "proceedings-article" @default.
- W2517474133 hasAuthorship W2517474133A5035293475 @default.
- W2517474133 hasAuthorship W2517474133A5057521182 @default.
- W2517474133 hasAuthorship W2517474133A5058432859 @default.
- W2517474133 hasConcept C10138342 @default.
- W2517474133 hasConcept C119857082 @default.
- W2517474133 hasConcept C12267149 @default.
- W2517474133 hasConcept C131562839 @default.
- W2517474133 hasConcept C149782125 @default.
- W2517474133 hasConcept C154945302 @default.
- W2517474133 hasConcept C162324750 @default.
- W2517474133 hasConcept C41008148 @default.
- W2517474133 hasConcept C46686674 @default.
- W2517474133 hasConcept C78508483 @default.
- W2517474133 hasConceptScore W2517474133C10138342 @default.
- W2517474133 hasConceptScore W2517474133C119857082 @default.
- W2517474133 hasConceptScore W2517474133C12267149 @default.
- W2517474133 hasConceptScore W2517474133C131562839 @default.
- W2517474133 hasConceptScore W2517474133C149782125 @default.
- W2517474133 hasConceptScore W2517474133C154945302 @default.
- W2517474133 hasConceptScore W2517474133C162324750 @default.
- W2517474133 hasConceptScore W2517474133C41008148 @default.
- W2517474133 hasConceptScore W2517474133C46686674 @default.
- W2517474133 hasConceptScore W2517474133C78508483 @default.
- W2517474133 hasLocation W25174741331 @default.
- W2517474133 hasOpenAccess W2517474133 @default.
- W2517474133 hasPrimaryLocation W25174741331 @default.
- W2517474133 hasRelatedWork W2005346797 @default.
- W2517474133 hasRelatedWork W2098619933 @default.
- W2517474133 hasRelatedWork W2104129931 @default.
- W2517474133 hasRelatedWork W2106804296 @default.
- W2517474133 hasRelatedWork W2335134956 @default.
- W2517474133 hasRelatedWork W2734986640 @default.
- W2517474133 hasRelatedWork W2750268091 @default.
- W2517474133 hasRelatedWork W2766940648 @default.
- W2517474133 hasRelatedWork W2769487452 @default.
- W2517474133 hasRelatedWork W2786348607 @default.
- W2517474133 hasRelatedWork W2886395332 @default.