Matches in SemOpenAlex for { <https://semopenalex.org/work/W2517504046> ?p ?o ?g. }
- W2517504046 endingPage "4" @default.
- W2517504046 startingPage "2" @default.
- W2517504046 abstract "Osteoarthritis (OA) is the most common age-related degenerative joint disorder. It is considered a disease of the entire joint, which is not simply a result of attrition but rather abnormal remodelling and coalescent failure of multiple tissues. Despite the prevalence of OA, therapeutic strategies are currently limited to the treatment of pain and inflammation. New disease-modifying agents that slow progression and diagnostic biomarkers are urgently required. Given the lack of treatment options to repair degradation of articular cartilage, anti-resorptive agents and anabolics, such as bisphosphonates, are candidate treatments for OA (Karsdal et al., 2014Karsdal M.A. Bay-Jensen A.C. Lories R.J. Abramson S. Spector T. Pastoureau P. Christiansen C. Attur M. Henriksen K. Goldring S.R. Kraus V. The coupling of bone and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives and anabolics as potential treatments?.Ann. Rheum. Dis. 2014; 73: 336-348Crossref PubMed Scopus (156) Google Scholar). An optimal treatment for OA will likely target at least two joint tissues, yet the factors that govern the bone-cartilage interactions during pathogenesis remain largely unknown. The bone-cartilage interface is an important synergistic unit consisting of the area between the deep layers of articular cartilage and the underlying subchondral bone (Yuan et al., 2014Yuan X.L. Meng H.Y. Wang Y.C. Peng J. Guo Q.Y. Wang A.Y. Lu S.B. Bone–cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies.Osteoarthr. Cartil. 2014; 22: 1077-1089Summary Full Text Full Text PDF PubMed Scopus (187) Google Scholar). The close physical association between subchondral bone and cartilage allows interaction and suggests biochemical and molecular crosstalk may contribute to OA pathology (Goldring, 2012Goldring S.R. Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis.Ther. Adv. Musculoskelet. Dis. 2012; 4: 249-258Crossref PubMed Scopus (122) Google Scholar). Crosstalk is elevated at the osteoarthritic bone-cartilage juncture due to osteochondral angiogenesis and bone remodelling (Fig. 1). Vascular invasion from bone into cartilage and development of microcracks and fissures provide pathways for communication (Li et al., 2013Li G. Yin J. Gao J. Cheng T.S. Pavlos N.J. Zhang C. Zheng M.H. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes.Arthritis Res. Ther. 2013; 15: 223Crossref PubMed Scopus (446) Google Scholar). Alterations in either bone or cartilage can modulate signalling pathways including HIF-2α, OPG/RANK/RANKL, TGF-β and Wntβ-catenin; these pathways may alter homeostasis of neighbouring tissues and affect the function of the joint unit as a whole (Yuan et al., 2014Yuan X.L. Meng H.Y. Wang Y.C. Peng J. Guo Q.Y. Wang A.Y. Lu S.B. Bone–cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies.Osteoarthr. Cartil. 2014; 22: 1077-1089Summary Full Text Full Text PDF PubMed Scopus (187) Google Scholar). The biomarker CTX-II has been detected at the bone-cartilage interface and is associated with osteophyte formation (Bay-Jensen et al., 2008Bay-Jensen A.C. Andersen T.L. Charni-Ben Tabassi N. Kristensen P.W. Kjaersgaard-Andersen P. Sandell L. Garnero P. Delaisse J.M. Biochemical markers of type II collagen breakdown and synthesis are positioned at specific sites in human osteoarthritic knee cartilage.Osteoarthr. Cartil. 2008; 16: 615-623Summary Full Text Full Text PDF PubMed Scopus (59) Google Scholar). It has also been suggested that changes in the uCTX-II level may reflect the functional bone-cartilage unit, indicating the importance of crosstalk in OA pathophysiology (Lories and Luyten, 2011Lories R.J. Luyten F.P. The bone-cartilage unit in osteoarthritis.Nat. Rev. Rheumatol. 2011; 7: 43-49Crossref PubMed Scopus (448) Google Scholar). The role of the crosstalk in the progression of OA requires additional investigation using genomics, epigenetics, proteomics and metabolomics approaches. Proteomic technologies make it possible to identify factors involved in OA progression and build a library of mediators. Studies have revealed numerous cytokines, proteases, and matrix fragments in serum, synovial fluid, and articular cartilage of OA patients. However, little information is currently available regarding the protein profiles of disturbances in subchondral bone or bone-cartilage crosstalk (Boris Chan et al., 2015Boris Chan P.M. Zhu L. Wen C.Y. Chiu K.Y. Subchondral bone proteomics in osteoarthritis: current status and perspectives.J. Orthop. Trans. 2015; 3: 71-77Summary Full Text Full Text PDF PubMed Scopus (12) Google Scholar). Gene expression profiles of subchondral bone isolated from early experimental OA have identified dysregulated genes with roles in bone and cartilage development, remodelling and degeneration (Zhang et al., 2012Zhang R. Fang H. Chen Y. Shen J. Lu H. Zeng C. Ren J. Zeng H. Li Z. Chen S. Cai D. Zhao Q. Gene expression analyses of subchondral bone in early experimental osteoarthritis by microarray.PLoS One. 2012; 7e32356Google Scholar). That study indicates the importance of further investigations into the subchondral bone using high-throughput protein analyses. Additionally, transcriptome-proteome combined study of OA synovial tissue revealed that gene expression changes do not always coincide with protein levels, this again demonstrates the need for comprehensive proteome studies of subchondral bone to validate transcriptomics (Lorenz et al., 2003Lorenz P. Ruschpler P. Koczan D. Stiehl P. Thiesen H.-J. From transcriptome to proteome: differentially expressed proteins identified in synovial tissue of patients suffering from rheumatoid arthritis and osteoarthritis by an initial screen with a panel of 791 antibodies.Proteomics. 2003; 3: 991-1002Crossref PubMed Scopus (75) Google Scholar). It is technically challenging to extract proteins of interest from bone due to the abundance of collagens and minerals. A pilot study using HCl/Urea extraction identified 119 proteins in OA subchondral bone with only 7 proteins shared between the low and high damage regions. This data suggests that signalling pathways in the corresponding subchondral bone region may relate to OA severity (Boris Chan et al., 2015Boris Chan P.M. Zhu L. Wen C.Y. Chiu K.Y. Subchondral bone proteomics in osteoarthritis: current status and perspectives.J. Orthop. Trans. 2015; 3: 71-77Summary Full Text Full Text PDF PubMed Scopus (12) Google Scholar). However, validation is required with the authors acknowledging that the regional variations could be due to experimental error. Bone–cartilage communication models are needed to elucidate soluble mediators. Previously we have employed a cartilage explant model system to investigate the secretome of cartilage in response to inflammatory stimuli (Williams et al., 2013Williams A. Smith J.R. Allaway D. Harris P. Liddell S. Mobasheri A. Carprofen inhibits the release of matrix metalloproteinases 1, 3, and 13 in the secretome of an explant model of articular cartilage stimulated with interleukin 1beta.Arthritis Res. Ther. 2013; 15: R223Crossref PubMed Scopus (29) Google Scholar). A similar model system is required using osteochondral co-cultured explants to identify novel soluble factors released in response to inflammation or loading when the bone-cartilage juncture is intact. Recently an in vitro three-dimensional microsystem that models the osteochondral unit was developed. Osteogenic and chondrogenic tissues were produced using mesenchymal stem cells seeded within biomaterial scaffolds in a multichamber bioreactor (Lin et al., 2014Lin H. Lozito T.P. Alexander P.G. Gottardi R. Tuan R.S. Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β.Mol. Pharm. 2014; 11: 2203-2212Crossref PubMed Scopus (95) Google Scholar). Tissue-specific gene expression, matrix production and a basophilic developing tidemark were detected. Introduction of interleukin-1β (IL-1β) to either the chondral or osseous medium induced strong degradative responses both locally and in the opposing tissue type. IL-1β treatment of the osseous compartment resulted in a stronger catabolic response in the chondral layer than direct IL-1β application to the chondral component. This study provides evidence for active biochemical communication across the bone-cartilage interface and supports the osteochondral nature of OA (Lin et al., 2014Lin H. Lozito T.P. Alexander P.G. Gottardi R. Tuan R.S. Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β.Mol. Pharm. 2014; 11: 2203-2212Crossref PubMed Scopus (95) Google Scholar). Development of cell based model systems will allow investigation into the release of soluble factors by stimulated osteoblasts/osteocytes that can induce a pro-catabolic phenotype in chondrocytes. An iTRAQ secretome analysis revealed that a soluble protein (14-3-3ε) was differentially present when a mechanical stress was applied on osteoblasts and that these secreted mediators could activate chondrocytes to produce metalloproteinases (Priam et al., 2013Priam S. Bougault C. Houard X. Gosset M. Salvat C. Berenbaum F. Jacques C. Identification of soluble 14-3-3∊ as a novel subchondral bone mediator involved in cartilage degradation in osteoarthritis.Arthritis Rheum. 2013; 65: 1831-1842Crossref PubMed Scopus (48) Google Scholar). In conclusion, molecular studies of crosstalk at the bone–cartilage interface will aid our understanding of the pathophysiology of OA and advance therapeutic approaches. This will facilitate the development of novel drugs and agents that specifically block mechanisms of crosstalk responsible for the structural changes in OA and provide a novel system for biomarker discovery. The authors wrote this paper within the scope of their research positions. The authors declare no conflict of interests. The authors declare no competing interests. The authors are members of the D-BOARD Consortium funded by European Commission Framework 7 programme (EU FP7; HEALTH.2012.2.4.5-2, project number 305815, Novel Diagnostics and Biomarkers for Early Identification of Chronic Inflammatory Joint Diseases). AM is co-ordinator of the D-BOARD Consortium and a member of the Arthritis Research UK Centre for Sport, Exercise, and Osteoarthritis, funded by Arthritis Research UK (Grant Reference: 20194). CM is supported by the European Commission through a Marie Curie Intra-European Fellowship for Career Development grant (project number 625746; acronym: CHONDRION; FP7-PEOPLE-2013-IEF) awarded to AM. AM is a member of the Applied Public-Private Research enabling OsteoArthritis Clinical Headway (APPROACH) Consortium, 1http://www.approachproject.eu a 5-year project funded by the European Commission's Innovative Medicines Initiative (IMI). APPROACH is a public-private partnership directed towards osteoarthritis biomarker development through the establishment of a heavily phenotyped and comprehensively analyzed longitudinal cohort. The research leading to these results has received partial support from the Innovative Medicines Initiative (IMI) Joint Undertaking under grant agreement no. 115770, resources of which are composed of financial contribution from the European Union's Seventh Framework programme (FP7/2007–2013) and EFPIA companies' in kind contribution." @default.
- W2517504046 created "2016-09-16" @default.
- W2517504046 creator A5013076020 @default.
- W2517504046 creator A5081562884 @default.
- W2517504046 creator A5085852829 @default.
- W2517504046 date "2016-09-01" @default.
- W2517504046 modified "2023-10-17" @default.
- W2517504046 title "Applying Proteomics to Study Crosstalk at the Cartilage-Subchondral Bone Interface in Osteoarthritis: Current Status and Future Directions" @default.
- W2517504046 cites W1540201426 @default.
- W2517504046 cites W1995392360 @default.
- W2517504046 cites W1999589417 @default.
- W2517504046 cites W2011339778 @default.
- W2517504046 cites W2022991367 @default.
- W2517504046 cites W2072016997 @default.
- W2517504046 cites W2075255950 @default.
- W2517504046 cites W2082303280 @default.
- W2517504046 cites W2091244598 @default.
- W2517504046 cites W2121783564 @default.
- W2517504046 cites W2146327854 @default.
- W2517504046 cites W2146548807 @default.
- W2517504046 doi "https://doi.org/10.1016/j.ebiom.2016.08.047" @default.
- W2517504046 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5049982" @default.
- W2517504046 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27614393" @default.
- W2517504046 hasPublicationYear "2016" @default.
- W2517504046 type Work @default.
- W2517504046 sameAs 2517504046 @default.
- W2517504046 citedByCount "10" @default.
- W2517504046 countsByYear W25175040462018 @default.
- W2517504046 countsByYear W25175040462019 @default.
- W2517504046 countsByYear W25175040462020 @default.
- W2517504046 countsByYear W25175040462021 @default.
- W2517504046 countsByYear W25175040462022 @default.
- W2517504046 crossrefType "journal-article" @default.
- W2517504046 hasAuthorship W2517504046A5013076020 @default.
- W2517504046 hasAuthorship W2517504046A5081562884 @default.
- W2517504046 hasAuthorship W2517504046A5085852829 @default.
- W2517504046 hasBestOaLocation W25175040461 @default.
- W2517504046 hasConcept C104317684 @default.
- W2517504046 hasConcept C105702510 @default.
- W2517504046 hasConcept C119599485 @default.
- W2517504046 hasConcept C127413603 @default.
- W2517504046 hasConcept C136229726 @default.
- W2517504046 hasConcept C142724271 @default.
- W2517504046 hasConcept C148043351 @default.
- W2517504046 hasConcept C169822122 @default.
- W2517504046 hasConcept C204787440 @default.
- W2517504046 hasConcept C24326235 @default.
- W2517504046 hasConcept C2776164576 @default.
- W2517504046 hasConcept C2780550940 @default.
- W2517504046 hasConcept C3018615303 @default.
- W2517504046 hasConcept C3020332539 @default.
- W2517504046 hasConcept C41008148 @default.
- W2517504046 hasConcept C46111723 @default.
- W2517504046 hasConcept C55493867 @default.
- W2517504046 hasConcept C60644358 @default.
- W2517504046 hasConcept C70721500 @default.
- W2517504046 hasConcept C71924100 @default.
- W2517504046 hasConcept C86803240 @default.
- W2517504046 hasConceptScore W2517504046C104317684 @default.
- W2517504046 hasConceptScore W2517504046C105702510 @default.
- W2517504046 hasConceptScore W2517504046C119599485 @default.
- W2517504046 hasConceptScore W2517504046C127413603 @default.
- W2517504046 hasConceptScore W2517504046C136229726 @default.
- W2517504046 hasConceptScore W2517504046C142724271 @default.
- W2517504046 hasConceptScore W2517504046C148043351 @default.
- W2517504046 hasConceptScore W2517504046C169822122 @default.
- W2517504046 hasConceptScore W2517504046C204787440 @default.
- W2517504046 hasConceptScore W2517504046C24326235 @default.
- W2517504046 hasConceptScore W2517504046C2776164576 @default.
- W2517504046 hasConceptScore W2517504046C2780550940 @default.
- W2517504046 hasConceptScore W2517504046C3018615303 @default.
- W2517504046 hasConceptScore W2517504046C3020332539 @default.
- W2517504046 hasConceptScore W2517504046C41008148 @default.
- W2517504046 hasConceptScore W2517504046C46111723 @default.
- W2517504046 hasConceptScore W2517504046C55493867 @default.
- W2517504046 hasConceptScore W2517504046C60644358 @default.
- W2517504046 hasConceptScore W2517504046C70721500 @default.
- W2517504046 hasConceptScore W2517504046C71924100 @default.
- W2517504046 hasConceptScore W2517504046C86803240 @default.
- W2517504046 hasLocation W25175040461 @default.
- W2517504046 hasLocation W25175040462 @default.
- W2517504046 hasLocation W25175040463 @default.
- W2517504046 hasLocation W25175040464 @default.
- W2517504046 hasLocation W25175040465 @default.
- W2517504046 hasLocation W25175040466 @default.
- W2517504046 hasOpenAccess W2517504046 @default.
- W2517504046 hasPrimaryLocation W25175040461 @default.
- W2517504046 hasRelatedWork W1974060890 @default.
- W2517504046 hasRelatedWork W2003146126 @default.
- W2517504046 hasRelatedWork W2005157449 @default.
- W2517504046 hasRelatedWork W2071888772 @default.
- W2517504046 hasRelatedWork W2169762456 @default.
- W2517504046 hasRelatedWork W2404782811 @default.
- W2517504046 hasRelatedWork W4232115486 @default.
- W2517504046 hasRelatedWork W4241953583 @default.
- W2517504046 hasRelatedWork W4249849948 @default.
- W2517504046 hasRelatedWork W619208188 @default.
- W2517504046 hasVolume "11" @default.