Matches in SemOpenAlex for { <https://semopenalex.org/work/W2517738081> ?p ?o ?g. }
- W2517738081 endingPage "7407" @default.
- W2517738081 startingPage "7382" @default.
- W2517738081 abstract "A new semi-analytical solution is developed for the velocity-dependent dispersion Henry problem using the Fourier-Galerkin method (FG). The integral arising from the velocity-dependent dispersion term is evaluated numerically using an accurate technique based on an adaptive scheme. Numerical integration and nonlinear dependence of the dispersion on the velocity render the semi-analytical solution impractical. To alleviate this issue, and to obtain the solution at affordable computational cost, a robust implementation for solving the nonlinear system arising from the FG method is developed. It allows for reducing the number of attempts of the iterative procedure and the computational cost by iteration. The accuracy of the semi-analytical solution is assessed in terms of the truncation orders of the Fourier series. An appropriate algorithm based on the sensitivity of the solution to the number of Fourier modes is used to obtain the required truncation levels. The resulting Fourier series are used to analytically evaluate the position of the principal isochlors and metrics characterizing the saltwater wedge. They are also used to calculate longitudinal and transverse dispersive fluxes and to provide physical insight into the dispersion mechanisms within the mixing zone. The developed semi-analytical solutions are compared against numerical solutions obtained using an in house code based on variant techniques for both space and time discretization. The comparison provides better confidence on the accuracy of both numerical and semi-analytical results. It shows that the new solutions are highly sensitive to the approximation techniques used in the numerical code which highlights their benefits for code benchmarking. This article is protected by copyright. All rights reserved." @default.
- W2517738081 created "2016-09-16" @default.
- W2517738081 creator A5013075319 @default.
- W2517738081 creator A5031544034 @default.
- W2517738081 creator A5043014645 @default.
- W2517738081 creator A5055263516 @default.
- W2517738081 creator A5063677376 @default.
- W2517738081 date "2016-09-01" @default.
- W2517738081 modified "2023-10-18" @default.
- W2517738081 title "The Henry problem: New semianalytical solution for velocity-dependent dispersion" @default.
- W2517738081 cites W1480220606 @default.
- W2517738081 cites W1494414937 @default.
- W2517738081 cites W1499361097 @default.
- W2517738081 cites W1500775780 @default.
- W2517738081 cites W1530030810 @default.
- W2517738081 cites W1642052582 @default.
- W2517738081 cites W1867591112 @default.
- W2517738081 cites W1964233138 @default.
- W2517738081 cites W1968463959 @default.
- W2517738081 cites W1970732703 @default.
- W2517738081 cites W1971065426 @default.
- W2517738081 cites W1971598155 @default.
- W2517738081 cites W1972682289 @default.
- W2517738081 cites W1979677449 @default.
- W2517738081 cites W1984531281 @default.
- W2517738081 cites W1985756959 @default.
- W2517738081 cites W1986442459 @default.
- W2517738081 cites W1992024617 @default.
- W2517738081 cites W1994212712 @default.
- W2517738081 cites W1995609408 @default.
- W2517738081 cites W1995884324 @default.
- W2517738081 cites W2000852789 @default.
- W2517738081 cites W2001074165 @default.
- W2517738081 cites W2002503267 @default.
- W2517738081 cites W2004525979 @default.
- W2517738081 cites W2008143903 @default.
- W2517738081 cites W2008562731 @default.
- W2517738081 cites W201036173 @default.
- W2517738081 cites W2010655290 @default.
- W2517738081 cites W2011295426 @default.
- W2517738081 cites W2015943553 @default.
- W2517738081 cites W2016846387 @default.
- W2517738081 cites W2019511110 @default.
- W2517738081 cites W2019657562 @default.
- W2517738081 cites W2020909052 @default.
- W2517738081 cites W2023130238 @default.
- W2517738081 cites W2028542434 @default.
- W2517738081 cites W2030385471 @default.
- W2517738081 cites W2034620210 @default.
- W2517738081 cites W2041448023 @default.
- W2517738081 cites W2042526293 @default.
- W2517738081 cites W2042824470 @default.
- W2517738081 cites W2045883373 @default.
- W2517738081 cites W2056693768 @default.
- W2517738081 cites W2059678161 @default.
- W2517738081 cites W205988646 @default.
- W2517738081 cites W2068422891 @default.
- W2517738081 cites W2077145642 @default.
- W2517738081 cites W2078461889 @default.
- W2517738081 cites W2082169359 @default.
- W2517738081 cites W2083108147 @default.
- W2517738081 cites W2083388884 @default.
- W2517738081 cites W2083822301 @default.
- W2517738081 cites W2085315817 @default.
- W2517738081 cites W2092195869 @default.
- W2517738081 cites W2093662718 @default.
- W2517738081 cites W2097927798 @default.
- W2517738081 cites W2107845361 @default.
- W2517738081 cites W2109869086 @default.
- W2517738081 cites W2125085333 @default.
- W2517738081 cites W2125242177 @default.
- W2517738081 cites W2125939934 @default.
- W2517738081 cites W2130350269 @default.
- W2517738081 cites W2130894980 @default.
- W2517738081 cites W2133897616 @default.
- W2517738081 cites W2137404774 @default.
- W2517738081 cites W2137948177 @default.
- W2517738081 cites W2139999045 @default.
- W2517738081 cites W2141655040 @default.
- W2517738081 cites W2143979414 @default.
- W2517738081 cites W2145430922 @default.
- W2517738081 cites W2149566633 @default.
- W2517738081 cites W2166284663 @default.
- W2517738081 cites W2168483007 @default.
- W2517738081 cites W2173681351 @default.
- W2517738081 cites W2269171694 @default.
- W2517738081 cites W2300763261 @default.
- W2517738081 cites W279104365 @default.
- W2517738081 cites W4213136431 @default.
- W2517738081 cites W4233270998 @default.
- W2517738081 doi "https://doi.org/10.1002/2016wr019288" @default.
- W2517738081 hasPublicationYear "2016" @default.
- W2517738081 type Work @default.
- W2517738081 sameAs 2517738081 @default.
- W2517738081 citedByCount "36" @default.
- W2517738081 countsByYear W25177380812017 @default.
- W2517738081 countsByYear W25177380812018 @default.
- W2517738081 countsByYear W25177380812019 @default.