Matches in SemOpenAlex for { <https://semopenalex.org/work/W2517743267> ?p ?o ?g. }
- W2517743267 endingPage "206" @default.
- W2517743267 startingPage "196" @default.
- W2517743267 abstract "We give a short but detailed review of the methods used to deal with linear mixed models (restricted likelihood, AIREML algorithm, best linear unbiased predictors, etc.), with a few original points. Then we describe three common applications of the linear mixed model in contemporary human genetics: association testing (pathways analysis or rare variants association tests), genomic heritability estimates, and correction for population stratification in genome-wide association studies. We also consider the performance of best linear unbiased predictors for prediction in this context, through a simulation study for rare variants in a short genomic region, and through a short theoretical development for genome-wide data. For each of these applications, we discuss the relevance and the impact of modeling genetic effects as random effects." @default.
- W2517743267 created "2016-09-16" @default.
- W2517743267 creator A5043074910 @default.
- W2517743267 creator A5045616257 @default.
- W2517743267 date "2015-01-01" @default.
- W2517743267 modified "2023-10-15" @default.
- W2517743267 title "The Use of the Linear Mixed Model in Human Genetics" @default.
- W2517743267 cites W1971102564 @default.
- W2517743267 cites W1971141173 @default.
- W2517743267 cites W1980168725 @default.
- W2517743267 cites W1983539381 @default.
- W2517743267 cites W1991704577 @default.
- W2517743267 cites W1993849755 @default.
- W2517743267 cites W1999398820 @default.
- W2517743267 cites W2003472145 @default.
- W2517743267 cites W2018903642 @default.
- W2517743267 cites W2028260332 @default.
- W2517743267 cites W2029387902 @default.
- W2517743267 cites W2031781568 @default.
- W2517743267 cites W2033151532 @default.
- W2517743267 cites W2033351168 @default.
- W2517743267 cites W2041953582 @default.
- W2517743267 cites W2056798725 @default.
- W2517743267 cites W2056875364 @default.
- W2517743267 cites W2058148991 @default.
- W2517743267 cites W2067100182 @default.
- W2517743267 cites W2076921970 @default.
- W2517743267 cites W2079927753 @default.
- W2517743267 cites W2080672605 @default.
- W2517743267 cites W2082573972 @default.
- W2517743267 cites W2085169496 @default.
- W2517743267 cites W2086062071 @default.
- W2517743267 cites W2086799994 @default.
- W2517743267 cites W2087936498 @default.
- W2517743267 cites W2088486634 @default.
- W2517743267 cites W2100909778 @default.
- W2517743267 cites W2108299701 @default.
- W2517743267 cites W2119372134 @default.
- W2517743267 cites W2127684760 @default.
- W2517743267 cites W2129813466 @default.
- W2517743267 cites W2133148918 @default.
- W2517743267 cites W2141810183 @default.
- W2517743267 cites W2148985208 @default.
- W2517743267 cites W2155496693 @default.
- W2517743267 cites W2157752701 @default.
- W2517743267 cites W2161644980 @default.
- W2517743267 cites W2163953557 @default.
- W2517743267 cites W2188707104 @default.
- W2517743267 cites W2326225147 @default.
- W2517743267 cites W2400486211 @default.
- W2517743267 cites W2602374858 @default.
- W2517743267 cites W4293258550 @default.
- W2517743267 doi "https://doi.org/10.1159/000447634" @default.
- W2517743267 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27576760" @default.
- W2517743267 hasPublicationYear "2015" @default.
- W2517743267 type Work @default.
- W2517743267 sameAs 2517743267 @default.
- W2517743267 citedByCount "17" @default.
- W2517743267 countsByYear W25177432672015 @default.
- W2517743267 countsByYear W25177432672017 @default.
- W2517743267 countsByYear W25177432672019 @default.
- W2517743267 countsByYear W25177432672020 @default.
- W2517743267 countsByYear W25177432672021 @default.
- W2517743267 countsByYear W25177432672022 @default.
- W2517743267 countsByYear W25177432672023 @default.
- W2517743267 crossrefType "journal-article" @default.
- W2517743267 hasAuthorship W2517743267A5043074910 @default.
- W2517743267 hasAuthorship W2517743267A5045616257 @default.
- W2517743267 hasConcept C103545067 @default.
- W2517743267 hasConcept C104317684 @default.
- W2517743267 hasConcept C105795698 @default.
- W2517743267 hasConcept C106208931 @default.
- W2517743267 hasConcept C119857082 @default.
- W2517743267 hasConcept C126322002 @default.
- W2517743267 hasConcept C135763542 @default.
- W2517743267 hasConcept C144621757 @default.
- W2517743267 hasConcept C151730666 @default.
- W2517743267 hasConcept C153209595 @default.
- W2517743267 hasConcept C153720581 @default.
- W2517743267 hasConcept C16012445 @default.
- W2517743267 hasConcept C161890455 @default.
- W2517743267 hasConcept C163175372 @default.
- W2517743267 hasConcept C166976648 @default.
- W2517743267 hasConcept C168743327 @default.
- W2517743267 hasConcept C186413461 @default.
- W2517743267 hasConcept C2779343474 @default.
- W2517743267 hasConcept C2993967602 @default.
- W2517743267 hasConcept C33923547 @default.
- W2517743267 hasConcept C41008148 @default.
- W2517743267 hasConcept C54355233 @default.
- W2517743267 hasConcept C70721500 @default.
- W2517743267 hasConcept C71924100 @default.
- W2517743267 hasConcept C81917197 @default.
- W2517743267 hasConcept C86803240 @default.
- W2517743267 hasConcept C95190672 @default.
- W2517743267 hasConceptScore W2517743267C103545067 @default.
- W2517743267 hasConceptScore W2517743267C104317684 @default.
- W2517743267 hasConceptScore W2517743267C105795698 @default.