Matches in SemOpenAlex for { <https://semopenalex.org/work/W2517808396> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2517808396 abstract "Due to its storage and search efficiency, hashing has attracted great attentions in large-scale vision problems such as image retrieval and recognition. This paper presents a novel Deep Learning based Supervised Hashing (DLSH) method by using a deep neural network to better capture the semantic structure of nonlinear and complex data. We consider learning a nonlinear embedding that simultaneously preserves semantic information and produces nearby binary codes for semantically similar data. Specifically, our hashing model is trained to maximize the similarity measure of neighbor pairs while preserving the relative similarity of non-neighbor pairs with a relaxed empirical penalty in the binary space. An effective regularizer for minimizing the quantization loss between the learned embedding and the binary codes is also considered in the optimization to generate better hash code quality. Experimental results have demonstrated the proposed method outperforms the state-of-the-art methods." @default.
- W2517808396 created "2016-09-16" @default.
- W2517808396 creator A5005908865 @default.
- W2517808396 creator A5037862575 @default.
- W2517808396 date "2016-07-01" @default.
- W2517808396 modified "2023-10-18" @default.
- W2517808396 title "Deep learning based supervised hashing for efficient image retrieval" @default.
- W2517808396 cites W1525410796 @default.
- W2517808396 cites W1910300841 @default.
- W2517808396 cites W1956333070 @default.
- W2517808396 cites W2204148968 @default.
- W2517808396 cites W2293824885 @default.
- W2517808396 cites W2913932916 @default.
- W2517808396 doi "https://doi.org/10.1109/icme.2016.7552927" @default.
- W2517808396 hasPublicationYear "2016" @default.
- W2517808396 type Work @default.
- W2517808396 sameAs 2517808396 @default.
- W2517808396 citedByCount "6" @default.
- W2517808396 countsByYear W25178083962017 @default.
- W2517808396 countsByYear W25178083962020 @default.
- W2517808396 countsByYear W25178083962021 @default.
- W2517808396 countsByYear W25178083962023 @default.
- W2517808396 crossrefType "proceedings-article" @default.
- W2517808396 hasAuthorship W2517808396A5005908865 @default.
- W2517808396 hasAuthorship W2517808396A5037862575 @default.
- W2517808396 hasConcept C108583219 @default.
- W2517808396 hasConcept C11413529 @default.
- W2517808396 hasConcept C115961682 @default.
- W2517808396 hasConcept C116738811 @default.
- W2517808396 hasConcept C119857082 @default.
- W2517808396 hasConcept C153180895 @default.
- W2517808396 hasConcept C154945302 @default.
- W2517808396 hasConcept C1667742 @default.
- W2517808396 hasConcept C28855332 @default.
- W2517808396 hasConcept C33923547 @default.
- W2517808396 hasConcept C38652104 @default.
- W2517808396 hasConcept C41008148 @default.
- W2517808396 hasConcept C41608201 @default.
- W2517808396 hasConcept C48372109 @default.
- W2517808396 hasConcept C63435697 @default.
- W2517808396 hasConcept C94375191 @default.
- W2517808396 hasConcept C99138194 @default.
- W2517808396 hasConceptScore W2517808396C108583219 @default.
- W2517808396 hasConceptScore W2517808396C11413529 @default.
- W2517808396 hasConceptScore W2517808396C115961682 @default.
- W2517808396 hasConceptScore W2517808396C116738811 @default.
- W2517808396 hasConceptScore W2517808396C119857082 @default.
- W2517808396 hasConceptScore W2517808396C153180895 @default.
- W2517808396 hasConceptScore W2517808396C154945302 @default.
- W2517808396 hasConceptScore W2517808396C1667742 @default.
- W2517808396 hasConceptScore W2517808396C28855332 @default.
- W2517808396 hasConceptScore W2517808396C33923547 @default.
- W2517808396 hasConceptScore W2517808396C38652104 @default.
- W2517808396 hasConceptScore W2517808396C41008148 @default.
- W2517808396 hasConceptScore W2517808396C41608201 @default.
- W2517808396 hasConceptScore W2517808396C48372109 @default.
- W2517808396 hasConceptScore W2517808396C63435697 @default.
- W2517808396 hasConceptScore W2517808396C94375191 @default.
- W2517808396 hasConceptScore W2517808396C99138194 @default.
- W2517808396 hasLocation W25178083961 @default.
- W2517808396 hasOpenAccess W2517808396 @default.
- W2517808396 hasPrimaryLocation W25178083961 @default.
- W2517808396 hasRelatedWork W2550705247 @default.
- W2517808396 hasRelatedWork W2659943647 @default.
- W2517808396 hasRelatedWork W2752097935 @default.
- W2517808396 hasRelatedWork W2897656415 @default.
- W2517808396 hasRelatedWork W2950622857 @default.
- W2517808396 hasRelatedWork W2971590157 @default.
- W2517808396 hasRelatedWork W3021619650 @default.
- W2517808396 hasRelatedWork W3196069353 @default.
- W2517808396 hasRelatedWork W4224301212 @default.
- W2517808396 hasRelatedWork W4226019763 @default.
- W2517808396 isParatext "false" @default.
- W2517808396 isRetracted "false" @default.
- W2517808396 magId "2517808396" @default.
- W2517808396 workType "article" @default.