Matches in SemOpenAlex for { <https://semopenalex.org/work/W2518032605> ?p ?o ?g. }
- W2518032605 endingPage "512" @default.
- W2518032605 startingPage "494" @default.
- W2518032605 abstract "The use of quantitative medical imaging data to initialize and constrain mechanistic mathematical models of tumor growth has demonstrated a compelling strategy for predicting therapeutic response. More specifically, we have demonstrated a data-driven framework for prediction of residual tumor burden following neoadjuvant therapy in breast cancer that uses a biophysical mathematical model combining reaction-diffusion growth/therapy dynamics and biomechanical effects driven by early time point imaging data. Whereas early work had been based on a limited dimensionality reduction (two-dimensional planar modeling analysis) to simplify the numerical implementation, in this work, we extend our framework to a fully volumetric, three-dimensional biophysical mathematical modeling approach in which parameter estimates are generated by an inverse problem based on the adjoint state method for numerical efficiency. In an in silico performance study, we show accurate parameter estimation with error less than 3% as compared to ground truth. We apply the approach to patient data from a patient with pathological complete response and a patient with residual tumor burden and demonstrate technical feasibility and predictive potential with direct comparisons between imaging data observation and model predictions of tumor cellularity and volume. Comparisons to our previous two-dimensional modeling framework reflect enhanced model prediction of residual tumor burden through the inclusion of additional imaging slices of patient-specific data." @default.
- W2518032605 created "2016-09-16" @default.
- W2518032605 creator A5027619317 @default.
- W2518032605 creator A5036352350 @default.
- W2518032605 creator A5053709484 @default.
- W2518032605 date "2017-02-01" @default.
- W2518032605 modified "2023-10-14" @default.
- W2518032605 title "Three-dimensional image-based mechanical modeling for predicting the response of breast cancer to neoadjuvant therapy" @default.
- W2518032605 cites W1487603533 @default.
- W2518032605 cites W1520028666 @default.
- W2518032605 cites W1587345366 @default.
- W2518032605 cites W1602426655 @default.
- W2518032605 cites W1676308325 @default.
- W2518032605 cites W1828047435 @default.
- W2518032605 cites W1936488532 @default.
- W2518032605 cites W1969176455 @default.
- W2518032605 cites W1970183130 @default.
- W2518032605 cites W1972293855 @default.
- W2518032605 cites W1974156572 @default.
- W2518032605 cites W1975135842 @default.
- W2518032605 cites W1975817152 @default.
- W2518032605 cites W1976974479 @default.
- W2518032605 cites W1982933390 @default.
- W2518032605 cites W1983530966 @default.
- W2518032605 cites W1989029379 @default.
- W2518032605 cites W1990634803 @default.
- W2518032605 cites W1990709487 @default.
- W2518032605 cites W2001974997 @default.
- W2518032605 cites W2006664445 @default.
- W2518032605 cites W2012231377 @default.
- W2518032605 cites W2012241134 @default.
- W2518032605 cites W2017933173 @default.
- W2518032605 cites W2017950984 @default.
- W2518032605 cites W2020465877 @default.
- W2518032605 cites W2024250498 @default.
- W2518032605 cites W2033730730 @default.
- W2518032605 cites W2038607477 @default.
- W2518032605 cites W2043967411 @default.
- W2518032605 cites W2044257143 @default.
- W2518032605 cites W2050061319 @default.
- W2518032605 cites W2057794476 @default.
- W2518032605 cites W2064692536 @default.
- W2518032605 cites W2069598084 @default.
- W2518032605 cites W2071473902 @default.
- W2518032605 cites W2072463991 @default.
- W2518032605 cites W2073534348 @default.
- W2518032605 cites W2076672259 @default.
- W2518032605 cites W2078323166 @default.
- W2518032605 cites W2083337908 @default.
- W2518032605 cites W2083610112 @default.
- W2518032605 cites W2084761689 @default.
- W2518032605 cites W2086888148 @default.
- W2518032605 cites W2088272414 @default.
- W2518032605 cites W2089956125 @default.
- W2518032605 cites W2090251162 @default.
- W2518032605 cites W2091633428 @default.
- W2518032605 cites W2091677440 @default.
- W2518032605 cites W2099871422 @default.
- W2518032605 cites W2100158834 @default.
- W2518032605 cites W2104945673 @default.
- W2518032605 cites W2115124692 @default.
- W2518032605 cites W2118605519 @default.
- W2518032605 cites W2118736534 @default.
- W2518032605 cites W2119762775 @default.
- W2518032605 cites W2124510077 @default.
- W2518032605 cites W2125385057 @default.
- W2518032605 cites W2125981191 @default.
- W2518032605 cites W2127890285 @default.
- W2518032605 cites W2130257210 @default.
- W2518032605 cites W2132566055 @default.
- W2518032605 cites W2135558784 @default.
- W2518032605 cites W2136587516 @default.
- W2518032605 cites W2139794744 @default.
- W2518032605 cites W2146839980 @default.
- W2518032605 cites W2148328620 @default.
- W2518032605 cites W2149283799 @default.
- W2518032605 cites W2152121803 @default.
- W2518032605 cites W2157285286 @default.
- W2518032605 cites W2160403387 @default.
- W2518032605 cites W2161543607 @default.
- W2518032605 cites W2162439819 @default.
- W2518032605 cites W2171157655 @default.
- W2518032605 cites W2271528576 @default.
- W2518032605 cites W2272719952 @default.
- W2518032605 cites W2315013432 @default.
- W2518032605 cites W2319583746 @default.
- W2518032605 cites W2324383231 @default.
- W2518032605 cites W2560367415 @default.
- W2518032605 cites W2964035852 @default.
- W2518032605 cites W4240504177 @default.
- W2518032605 doi "https://doi.org/10.1016/j.cma.2016.08.024" @default.
- W2518032605 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5193147" @default.
- W2518032605 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28042181" @default.
- W2518032605 hasPublicationYear "2017" @default.
- W2518032605 type Work @default.
- W2518032605 sameAs 2518032605 @default.
- W2518032605 citedByCount "51" @default.
- W2518032605 countsByYear W25180326052017 @default.