Matches in SemOpenAlex for { <https://semopenalex.org/work/W2518449211> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2518449211 abstract "Partial discharge (PD) results from deterioration to the insulation of high voltage equipment in power grids, such as transformers, switch gears, and cable terminals. PD monitoring is a promising approach that ensures the reliable performance of electrical assets through condition based maintenance. Machine learning techniques have been successfully used to discover features and specific patterns that can differentiate between partial discharges and noise. On-line PD monitoring systems have been recently deployed for continuously assessing the equipment health, so that its maintenance requires minimal cost and shorter disruption to operational services. However, labelled data is required in order to build predictive models for on-line PD monitoring. Labelled data is expensive to obtain since it requires expert input. In addition, in real scenarios the ratio of noise pulses to real PDs can be high, making the learning task harder. This paper investigates an active learning (AL) approach for streaming data that aims to maintain an on-line model that is robust to class imbalances. The empirical evaluation, using real HFCT sensor data, shows that the proposed AL approach is able to achieve over 80% accuracy in noisy scenarios with minimal expert dependence (only 2% of the labelled instances)." @default.
- W2518449211 created "2016-09-16" @default.
- W2518449211 creator A5004250949 @default.
- W2518449211 creator A5079470760 @default.
- W2518449211 creator A5086032916 @default.
- W2518449211 creator A5087516651 @default.
- W2518449211 creator A5090274747 @default.
- W2518449211 date "2016-06-01" @default.
- W2518449211 modified "2023-09-23" @default.
- W2518449211 title "Active Learning for On-Line Partial Discharge Monitoring in Noisy Environments" @default.
- W2518449211 cites W1501491042 @default.
- W2518449211 cites W1931803241 @default.
- W2518449211 cites W1933715213 @default.
- W2518449211 cites W1992122468 @default.
- W2518449211 cites W2000655115 @default.
- W2518449211 cites W2002067674 @default.
- W2518449211 cites W2031707528 @default.
- W2518449211 cites W2031977236 @default.
- W2518449211 cites W2040968250 @default.
- W2518449211 cites W2074988520 @default.
- W2518449211 cites W2101245256 @default.
- W2518449211 cites W2105998701 @default.
- W2518449211 cites W2110935841 @default.
- W2518449211 cites W2111077104 @default.
- W2518449211 cites W2119436620 @default.
- W2518449211 cites W2129562842 @default.
- W2518449211 cites W2156951000 @default.
- W2518449211 cites W2293165334 @default.
- W2518449211 cites W2479119857 @default.
- W2518449211 cites W934384960 @default.
- W2518449211 doi "https://doi.org/10.1109/mdm.2016.87" @default.
- W2518449211 hasPublicationYear "2016" @default.
- W2518449211 type Work @default.
- W2518449211 sameAs 2518449211 @default.
- W2518449211 citedByCount "1" @default.
- W2518449211 countsByYear W25184492112023 @default.
- W2518449211 crossrefType "proceedings-article" @default.
- W2518449211 hasAuthorship W2518449211A5004250949 @default.
- W2518449211 hasAuthorship W2518449211A5079470760 @default.
- W2518449211 hasAuthorship W2518449211A5086032916 @default.
- W2518449211 hasAuthorship W2518449211A5087516651 @default.
- W2518449211 hasAuthorship W2518449211A5090274747 @default.
- W2518449211 hasConcept C115961682 @default.
- W2518449211 hasConcept C119599485 @default.
- W2518449211 hasConcept C119857082 @default.
- W2518449211 hasConcept C127413603 @default.
- W2518449211 hasConcept C130143024 @default.
- W2518449211 hasConcept C154945302 @default.
- W2518449211 hasConcept C165801399 @default.
- W2518449211 hasConcept C198352243 @default.
- W2518449211 hasConcept C200601418 @default.
- W2518449211 hasConcept C2524010 @default.
- W2518449211 hasConcept C2775846686 @default.
- W2518449211 hasConcept C33923547 @default.
- W2518449211 hasConcept C41008148 @default.
- W2518449211 hasConcept C66322947 @default.
- W2518449211 hasConcept C70452415 @default.
- W2518449211 hasConcept C79403827 @default.
- W2518449211 hasConcept C99498987 @default.
- W2518449211 hasConceptScore W2518449211C115961682 @default.
- W2518449211 hasConceptScore W2518449211C119599485 @default.
- W2518449211 hasConceptScore W2518449211C119857082 @default.
- W2518449211 hasConceptScore W2518449211C127413603 @default.
- W2518449211 hasConceptScore W2518449211C130143024 @default.
- W2518449211 hasConceptScore W2518449211C154945302 @default.
- W2518449211 hasConceptScore W2518449211C165801399 @default.
- W2518449211 hasConceptScore W2518449211C198352243 @default.
- W2518449211 hasConceptScore W2518449211C200601418 @default.
- W2518449211 hasConceptScore W2518449211C2524010 @default.
- W2518449211 hasConceptScore W2518449211C2775846686 @default.
- W2518449211 hasConceptScore W2518449211C33923547 @default.
- W2518449211 hasConceptScore W2518449211C41008148 @default.
- W2518449211 hasConceptScore W2518449211C66322947 @default.
- W2518449211 hasConceptScore W2518449211C70452415 @default.
- W2518449211 hasConceptScore W2518449211C79403827 @default.
- W2518449211 hasConceptScore W2518449211C99498987 @default.
- W2518449211 hasLocation W25184492111 @default.
- W2518449211 hasOpenAccess W2518449211 @default.
- W2518449211 hasPrimaryLocation W25184492111 @default.
- W2518449211 hasRelatedWork W1863788251 @default.
- W2518449211 hasRelatedWork W1975035913 @default.
- W2518449211 hasRelatedWork W2044919773 @default.
- W2518449211 hasRelatedWork W2139442238 @default.
- W2518449211 hasRelatedWork W2142594818 @default.
- W2518449211 hasRelatedWork W2391563149 @default.
- W2518449211 hasRelatedWork W3114992894 @default.
- W2518449211 hasRelatedWork W3203469819 @default.
- W2518449211 hasRelatedWork W4360585628 @default.
- W2518449211 hasRelatedWork W2559035939 @default.
- W2518449211 isParatext "false" @default.
- W2518449211 isRetracted "false" @default.
- W2518449211 magId "2518449211" @default.
- W2518449211 workType "article" @default.