Matches in SemOpenAlex for { <https://semopenalex.org/work/W2518703048> ?p ?o ?g. }
- W2518703048 endingPage "801" @default.
- W2518703048 startingPage "783" @default.
- W2518703048 abstract "We propose a parametric block wild bootstrap approach to compute density forecasts for various types of mixed-data sampling (MIDAS) regressions. First, Monte Carlo simulations show that predictive densities for the various MIDAS models derived from the block wild bootstrap approach are more accurate in terms of coverage rates than predictive densities derived from either a residual-based bootstrap approach or by drawing errors from a normal distribution. This result holds whether the data-generating errors are normally independently distributed, serially correlated, heteroskedastic or a mixture of normal distributions. Second, we evaluate density forecasts for quarterly US real output growth in an empirical exercise, exploiting information from typical monthly and weekly series. We show that the block wild bootstrapping approach, applied to the various MIDAS regressions, produces predictive densities for US real output growth that are well calibrated. Moreover, relative accuracy, measured in terms of the logarithmic score, improves for the various MIDAS specifications as more information becomes available. Copyright © 2016 John Wiley & Sons, Ltd." @default.
- W2518703048 created "2016-09-23" @default.
- W2518703048 creator A5002657304 @default.
- W2518703048 creator A5043560481 @default.
- W2518703048 creator A5046753816 @default.
- W2518703048 date "2016-09-13" @default.
- W2518703048 modified "2023-09-28" @default.
- W2518703048 title "Density Forecasts With Midas Models" @default.
- W2518703048 cites W1553858487 @default.
- W2518703048 cites W1958202065 @default.
- W2518703048 cites W1970487353 @default.
- W2518703048 cites W1970744674 @default.
- W2518703048 cites W1977168372 @default.
- W2518703048 cites W1978815015 @default.
- W2518703048 cites W1981645586 @default.
- W2518703048 cites W1985789769 @default.
- W2518703048 cites W1988303155 @default.
- W2518703048 cites W1991502340 @default.
- W2518703048 cites W1994331360 @default.
- W2518703048 cites W2007093655 @default.
- W2518703048 cites W2007694684 @default.
- W2518703048 cites W2013206978 @default.
- W2518703048 cites W2019986161 @default.
- W2518703048 cites W2024749790 @default.
- W2518703048 cites W2041492724 @default.
- W2518703048 cites W2047694274 @default.
- W2518703048 cites W2051726817 @default.
- W2518703048 cites W2059787748 @default.
- W2518703048 cites W2060333425 @default.
- W2518703048 cites W2073016314 @default.
- W2518703048 cites W2075965721 @default.
- W2518703048 cites W2082703071 @default.
- W2518703048 cites W2083137543 @default.
- W2518703048 cites W2093425996 @default.
- W2518703048 cites W2104499761 @default.
- W2518703048 cites W2109216286 @default.
- W2518703048 cites W2109415218 @default.
- W2518703048 cites W2113422836 @default.
- W2518703048 cites W2113443570 @default.
- W2518703048 cites W2122966827 @default.
- W2518703048 cites W2124093518 @default.
- W2518703048 cites W2130276793 @default.
- W2518703048 cites W2150118744 @default.
- W2518703048 cites W2155963925 @default.
- W2518703048 cites W2166271947 @default.
- W2518703048 cites W2168211193 @default.
- W2518703048 cites W2179874418 @default.
- W2518703048 cites W2259411487 @default.
- W2518703048 cites W2310443519 @default.
- W2518703048 cites W3021318637 @default.
- W2518703048 cites W3022239381 @default.
- W2518703048 cites W3121707609 @default.
- W2518703048 cites W3122091423 @default.
- W2518703048 cites W3122549450 @default.
- W2518703048 cites W3122904576 @default.
- W2518703048 cites W3123109518 @default.
- W2518703048 cites W3123741823 @default.
- W2518703048 cites W3124216392 @default.
- W2518703048 cites W3125263362 @default.
- W2518703048 cites W4298872162 @default.
- W2518703048 doi "https://doi.org/10.1002/jae.2545" @default.
- W2518703048 hasPublicationYear "2016" @default.
- W2518703048 type Work @default.
- W2518703048 sameAs 2518703048 @default.
- W2518703048 citedByCount "21" @default.
- W2518703048 countsByYear W25187030482017 @default.
- W2518703048 countsByYear W25187030482018 @default.
- W2518703048 countsByYear W25187030482019 @default.
- W2518703048 countsByYear W25187030482020 @default.
- W2518703048 countsByYear W25187030482021 @default.
- W2518703048 countsByYear W25187030482022 @default.
- W2518703048 countsByYear W25187030482023 @default.
- W2518703048 crossrefType "journal-article" @default.
- W2518703048 hasAuthorship W2518703048A5002657304 @default.
- W2518703048 hasAuthorship W2518703048A5043560481 @default.
- W2518703048 hasAuthorship W2518703048A5046753816 @default.
- W2518703048 hasBestOaLocation W25187030482 @default.
- W2518703048 hasConcept C101104100 @default.
- W2518703048 hasConcept C105795698 @default.
- W2518703048 hasConcept C106131492 @default.
- W2518703048 hasConcept C11413529 @default.
- W2518703048 hasConcept C117251300 @default.
- W2518703048 hasConcept C134306372 @default.
- W2518703048 hasConcept C140779682 @default.
- W2518703048 hasConcept C143724316 @default.
- W2518703048 hasConcept C149782125 @default.
- W2518703048 hasConcept C151730666 @default.
- W2518703048 hasConcept C155512373 @default.
- W2518703048 hasConcept C19499675 @default.
- W2518703048 hasConcept C207609745 @default.
- W2518703048 hasConcept C2524010 @default.
- W2518703048 hasConcept C2777210771 @default.
- W2518703048 hasConcept C31972630 @default.
- W2518703048 hasConcept C33923547 @default.
- W2518703048 hasConcept C39927690 @default.
- W2518703048 hasConcept C41008148 @default.
- W2518703048 hasConcept C86803240 @default.
- W2518703048 hasConceptScore W2518703048C101104100 @default.