Matches in SemOpenAlex for { <https://semopenalex.org/work/W2518777242> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2518777242 abstract "In this work a new method has been proposed and validated to approximate multivariate scalar probability density functions (PDFs) within the framework of large eddy simulation (LES) of turbulent combustion.One of the most powerful modeling concepts is the so-called flamelet generated manifolds (FGM) approach in which the one-dimensional laminar flamelet solutions are embedded in a statistical description of turbulent combustion. This made extraordinary progress possible, however, properly describing and predicting such processes with sufficient accuracy in a computationally efficient manner still remains a formidable challenge. To make a simulation feasible, the number of degrees of freedom characterizing turbulent reacting flows must be reduced by a statistical averaging or filtering technique.In LES, structures smaller than the grid spacing are removed by means of a low-pass filter. As both the reaction kinetics and the turbulence-chemistry interaction are highly non-linear, the filtering leads to the occurrence of unclosed terms that describe the effects of unresolved fluctuations and need to be modeled. One way of accounting for these effects is to describe the unresolved fluctuations in a statistical fashion by means of a PDF. A common approach is to assume the shape of the PDF and to parametrize it with the first and second statistical moments of the distribution. Most processes can only be characterized with more than one control variable, however, it is a daunting task to come up with a viable assumption regarding the shape of such a joint PDF. The common assumption is that the control variables appearing in the FGM tables are statistically independent, consequently the sought joint PDF can be expressed as the product of univariate PDFs. However, this approximation has been proven inaccurate under certain circumstances. Furthermore, in this case when coupling with the FGM method the second moments of the control variables have to be introduced as additional parameters and the table of laminar flamelet solutions has to be pre-integrated. It increases the table's dimensionality often causing storage and memory problems. In this work a new multivariate discrete joint scalar PDF approach has been proposed to overcome these challenges. The novelty of this method is that the covariances among the univariate samples drawn from the marginal distributions are set with Kirkpatrick's simulated annealing algorithm (SA), which ensures that all the first and second statistical moments match the specified values including the correlations of the fluctuating control variables. This is done in such an efficient manner that makes it possible to generate the samples on the fly during the simulations. Once the sample set in the parameter space with the desired statistical moments have been generated, the look-up table can be accessed by each sample individually. Then the mean values of the thermochemical properties of interest can be calculated by simple ensemble averaging. This eliminates the need of pre-integrating the look-up table and consequently the increase in its dimensionality. It is sufficient to store the variables as functions of only the first moments of the control variables since higher moments are accounted for through the distribution of the discrete samples. Furthermore, this method can be generalized and adjusted to many different conditions as it does not pose any constraints on either how the marginal PDFs can be chosen or the number of control variables. Decoupling the look-up table from the actual shape of the PDFs offers the necessary flexibility for evaluating different PDFs or multiple look-up tables. The approach has been validated on the Sandia Flame D and the Sydney Bluff-Body Burner configurations against detailed experimental data and it has been compared to a conventional tabulated chemistry approach (FGM) with very encouraging results and a modest increase in CPU time." @default.
- W2518777242 created "2016-09-23" @default.
- W2518777242 creator A5048734382 @default.
- W2518777242 date "2016-06-21" @default.
- W2518777242 modified "2023-09-27" @default.
- W2518777242 title "Large Eddy Simulation of Turbulent Combustion: A Novel Multivariate Probability Density Function Approach" @default.
- W2518777242 hasPublicationYear "2016" @default.
- W2518777242 type Work @default.
- W2518777242 sameAs 2518777242 @default.
- W2518777242 citedByCount "0" @default.
- W2518777242 crossrefType "dissertation" @default.
- W2518777242 hasAuthorship W2518777242A5048734382 @default.
- W2518777242 hasConcept C105795698 @default.
- W2518777242 hasConcept C105923489 @default.
- W2518777242 hasConcept C106131492 @default.
- W2518777242 hasConcept C11413529 @default.
- W2518777242 hasConcept C121332964 @default.
- W2518777242 hasConcept C121448008 @default.
- W2518777242 hasConcept C121864883 @default.
- W2518777242 hasConcept C149441793 @default.
- W2518777242 hasConcept C178790620 @default.
- W2518777242 hasConcept C185592680 @default.
- W2518777242 hasConcept C18653775 @default.
- W2518777242 hasConcept C196558001 @default.
- W2518777242 hasConcept C197055811 @default.
- W2518777242 hasConcept C208081375 @default.
- W2518777242 hasConcept C2524010 @default.
- W2518777242 hasConcept C28826006 @default.
- W2518777242 hasConcept C31972630 @default.
- W2518777242 hasConcept C33923547 @default.
- W2518777242 hasConcept C41008148 @default.
- W2518777242 hasConcept C57691317 @default.
- W2518777242 hasConcept C57879066 @default.
- W2518777242 hasConcept C97355855 @default.
- W2518777242 hasConceptScore W2518777242C105795698 @default.
- W2518777242 hasConceptScore W2518777242C105923489 @default.
- W2518777242 hasConceptScore W2518777242C106131492 @default.
- W2518777242 hasConceptScore W2518777242C11413529 @default.
- W2518777242 hasConceptScore W2518777242C121332964 @default.
- W2518777242 hasConceptScore W2518777242C121448008 @default.
- W2518777242 hasConceptScore W2518777242C121864883 @default.
- W2518777242 hasConceptScore W2518777242C149441793 @default.
- W2518777242 hasConceptScore W2518777242C178790620 @default.
- W2518777242 hasConceptScore W2518777242C185592680 @default.
- W2518777242 hasConceptScore W2518777242C18653775 @default.
- W2518777242 hasConceptScore W2518777242C196558001 @default.
- W2518777242 hasConceptScore W2518777242C197055811 @default.
- W2518777242 hasConceptScore W2518777242C208081375 @default.
- W2518777242 hasConceptScore W2518777242C2524010 @default.
- W2518777242 hasConceptScore W2518777242C28826006 @default.
- W2518777242 hasConceptScore W2518777242C31972630 @default.
- W2518777242 hasConceptScore W2518777242C33923547 @default.
- W2518777242 hasConceptScore W2518777242C41008148 @default.
- W2518777242 hasConceptScore W2518777242C57691317 @default.
- W2518777242 hasConceptScore W2518777242C57879066 @default.
- W2518777242 hasConceptScore W2518777242C97355855 @default.
- W2518777242 hasLocation W25187772421 @default.
- W2518777242 hasOpenAccess W2518777242 @default.
- W2518777242 hasPrimaryLocation W25187772421 @default.
- W2518777242 hasRelatedWork W1979447779 @default.
- W2518777242 hasRelatedWork W2078699048 @default.
- W2518777242 hasRelatedWork W2155623006 @default.
- W2518777242 hasRelatedWork W2262736349 @default.
- W2518777242 hasRelatedWork W2269785185 @default.
- W2518777242 hasRelatedWork W2317695458 @default.
- W2518777242 hasRelatedWork W2736598490 @default.
- W2518777242 hasRelatedWork W2781391108 @default.
- W2518777242 hasRelatedWork W2797318765 @default.
- W2518777242 hasRelatedWork W2904209881 @default.
- W2518777242 hasRelatedWork W2938255066 @default.
- W2518777242 hasRelatedWork W2947511419 @default.
- W2518777242 hasRelatedWork W2950479035 @default.
- W2518777242 hasRelatedWork W2986587264 @default.
- W2518777242 hasRelatedWork W3100938926 @default.
- W2518777242 hasRelatedWork W433491595 @default.
- W2518777242 hasRelatedWork W633485890 @default.
- W2518777242 hasRelatedWork W645321428 @default.
- W2518777242 hasRelatedWork W654644946 @default.
- W2518777242 hasRelatedWork W2172399962 @default.
- W2518777242 isParatext "false" @default.
- W2518777242 isRetracted "false" @default.
- W2518777242 magId "2518777242" @default.
- W2518777242 workType "dissertation" @default.