Matches in SemOpenAlex for { <https://semopenalex.org/work/W2519388618> ?p ?o ?g. }
- W2519388618 endingPage "154" @default.
- W2519388618 startingPage "87" @default.
- W2519388618 abstract "This is an expository paper on the theory of gradient flows, and in particular of those PDEs which can be interpreted as gradient flows for the Wasserstein metric on the space of probability measures (a distance induced by optimal transport). The starting point is the Euclidean theory, and then its generalization to metric spaces, according to the work of Ambrosio, Gigli and Savaré. Then comes an independent exposition of the Wasserstein theory, with a short introduction to the optimal transport tools that are needed and to the notion of geodesic convexity, followed by a precise description of the Jordan–Kinderlehrer–Otto scheme and a sketch of proof to obtain its convergence in the easiest cases. A discussion of which equations are gradient flows PDEs and of numerical methods based on these ideas is also provided. The paper ends with a new, theoretical, development, due to Ambrosio, Gigli, Savaré, Kuwada and Ohta: the study of the heat flow in metric measure spaces." @default.
- W2519388618 created "2016-09-23" @default.
- W2519388618 creator A5022440462 @default.
- W2519388618 date "2017-03-14" @default.
- W2519388618 modified "2023-09-30" @default.
- W2519388618 title "{Euclidean, metric, and Wasserstein} gradient flows: an overview" @default.
- W2519388618 cites W126423635 @default.
- W2519388618 cites W1549932963 @default.
- W2519388618 cites W1571966798 @default.
- W2519388618 cites W1585160083 @default.
- W2519388618 cites W1833709478 @default.
- W2519388618 cites W1963715821 @default.
- W2519388618 cites W1967110739 @default.
- W2519388618 cites W1968781546 @default.
- W2519388618 cites W1970834444 @default.
- W2519388618 cites W1977750299 @default.
- W2519388618 cites W1979337236 @default.
- W2519388618 cites W1985506636 @default.
- W2519388618 cites W1991504302 @default.
- W2519388618 cites W1994521023 @default.
- W2519388618 cites W1995873164 @default.
- W2519388618 cites W1997924480 @default.
- W2519388618 cites W2000100785 @default.
- W2519388618 cites W2005847353 @default.
- W2519388618 cites W2005869430 @default.
- W2519388618 cites W2007338883 @default.
- W2519388618 cites W2021117151 @default.
- W2519388618 cites W2024935598 @default.
- W2519388618 cites W2026015148 @default.
- W2519388618 cites W2026932188 @default.
- W2519388618 cites W2027673210 @default.
- W2519388618 cites W2030739901 @default.
- W2519388618 cites W2032254325 @default.
- W2519388618 cites W2032323564 @default.
- W2519388618 cites W2042319042 @default.
- W2519388618 cites W2042892258 @default.
- W2519388618 cites W2045175626 @default.
- W2519388618 cites W2054723044 @default.
- W2519388618 cites W2064090547 @default.
- W2519388618 cites W2067569502 @default.
- W2519388618 cites W2068141557 @default.
- W2519388618 cites W2071048859 @default.
- W2519388618 cites W2080676466 @default.
- W2519388618 cites W2095881925 @default.
- W2519388618 cites W2096413780 @default.
- W2519388618 cites W2099613614 @default.
- W2519388618 cites W2119323323 @default.
- W2519388618 cites W2121866745 @default.
- W2519388618 cites W2127674094 @default.
- W2519388618 cites W2132883347 @default.
- W2519388618 cites W2146469851 @default.
- W2519388618 cites W2289579513 @default.
- W2519388618 cites W2500894653 @default.
- W2519388618 cites W2528005577 @default.
- W2519388618 cites W2963013958 @default.
- W2519388618 cites W2963341085 @default.
- W2519388618 cites W2964275938 @default.
- W2519388618 cites W3102850966 @default.
- W2519388618 cites W3103030880 @default.
- W2519388618 cites W3105915587 @default.
- W2519388618 cites W4236680271 @default.
- W2519388618 cites W4248500611 @default.
- W2519388618 cites W4249667877 @default.
- W2519388618 cites W4255839052 @default.
- W2519388618 cites W4255946158 @default.
- W2519388618 cites W4288268095 @default.
- W2519388618 cites W4301021743 @default.
- W2519388618 doi "https://doi.org/10.1007/s13373-017-0101-1" @default.
- W2519388618 hasPublicationYear "2017" @default.
- W2519388618 type Work @default.
- W2519388618 sameAs 2519388618 @default.
- W2519388618 citedByCount "110" @default.
- W2519388618 countsByYear W25193886182017 @default.
- W2519388618 countsByYear W25193886182018 @default.
- W2519388618 countsByYear W25193886182019 @default.
- W2519388618 countsByYear W25193886182020 @default.
- W2519388618 countsByYear W25193886182021 @default.
- W2519388618 countsByYear W25193886182022 @default.
- W2519388618 countsByYear W25193886182023 @default.
- W2519388618 crossrefType "journal-article" @default.
- W2519388618 hasAuthorship W2519388618A5022440462 @default.
- W2519388618 hasBestOaLocation W25193886181 @default.
- W2519388618 hasConcept C111919701 @default.
- W2519388618 hasConcept C120174047 @default.
- W2519388618 hasConcept C129782007 @default.
- W2519388618 hasConcept C134306372 @default.
- W2519388618 hasConcept C162324750 @default.
- W2519388618 hasConcept C165818556 @default.
- W2519388618 hasConcept C167879884 @default.
- W2519388618 hasConcept C176217482 @default.
- W2519388618 hasConcept C177148314 @default.
- W2519388618 hasConcept C186450821 @default.
- W2519388618 hasConcept C198043062 @default.
- W2519388618 hasConcept C21547014 @default.
- W2519388618 hasConcept C2524010 @default.
- W2519388618 hasConcept C2777634741 @default.
- W2519388618 hasConcept C2778572836 @default.
- W2519388618 hasConcept C28826006 @default.