Matches in SemOpenAlex for { <https://semopenalex.org/work/W2519544165> ?p ?o ?g. }
- W2519544165 endingPage "172" @default.
- W2519544165 startingPage "161" @default.
- W2519544165 abstract "Inconsistent performance of Species Distribution Models (SDMs), which may depend on several factors such as the initial conditions or the applied modelling technique, is one of the greatest challenges in ecological modelling. To overcome this problem, ensemble modelling combines the forecasts of several individual models. A commonly applied ensemble modelling technique is the Multi–Layer Perceptron (MLP) Ensemble, which was envisaged in the 1990s. However, despite its potential for ecological modelling, it has received little attention in the development of SDMs for freshwater fish. Although this approach originally included all the developed MLPs, Genetic Algorithms (GA) now allow selection of the optimal subset of MLPs and thus substantial improvement of model performance. In this study, MLP Ensembles were used to develop SDMs for the redfin barbel (Barbus haasi; Mertens, 1925) at two different spatial scales: the micro–scale and the meso–scale. Finally, the potential of the MLP Ensembles for environmental flow (e–flow) assessment was tested by linking model results to hydraulic simulation. MLP Ensembles with a candidate selection based on GA outperformed the optimal single MLP or the ensemble of the whole set of MLPs. The micro–scale model complemented previous studies, showing high suitability of relatively deep areas with coarse substrate and corroborating the need for cover and the rheophilic nature of the redfin barbel. The meso–scale model highlighted the advantages of using cross–scale variables, since elevation (a macro–scale variable) was selected in the optimal model. Although the meso–scale model also demonstrated that redfin barbel selects deep areas, it partially contradicted the micro–scale model because velocity had a clearer positive effect on habitat suitability and redfin barbel showed a preference for fine substrate in the meso–scale model. Although the meso–scale model suggested an overall higher habitat suitability of the test site, this did not result in a notable higher minimum environmental flow. Our results demonstrate that MLP Ensembles are a promising tool in the development of SDMs for freshwater fish species and proficient in e–flow assessment." @default.
- W2519544165 created "2016-09-23" @default.
- W2519544165 creator A5013612431 @default.
- W2519544165 creator A5029391418 @default.
- W2519544165 creator A5069267114 @default.
- W2519544165 creator A5071357715 @default.
- W2519544165 date "2017-01-01" @default.
- W2519544165 modified "2023-09-26" @default.
- W2519544165 title "On species distribution modelling, spatial scales and environmental flow assessment with Multi–Layer Perceptron Ensembles: A case study on the redfin barbel (Barbus haasi; Mertens, 1925)" @default.
- W2519544165 cites W114943931 @default.
- W2519544165 cites W1559787333 @default.
- W2519544165 cites W1883610601 @default.
- W2519544165 cites W1941763217 @default.
- W2519544165 cites W1966514075 @default.
- W2519544165 cites W1966665715 @default.
- W2519544165 cites W1983824663 @default.
- W2519544165 cites W1985819832 @default.
- W2519544165 cites W1986486128 @default.
- W2519544165 cites W1988664775 @default.
- W2519544165 cites W1995807627 @default.
- W2519544165 cites W1999344577 @default.
- W2519544165 cites W1999381866 @default.
- W2519544165 cites W2000872950 @default.
- W2519544165 cites W200209232 @default.
- W2519544165 cites W2002758482 @default.
- W2519544165 cites W2009886607 @default.
- W2519544165 cites W2010160525 @default.
- W2519544165 cites W2015717184 @default.
- W2519544165 cites W2018904035 @default.
- W2519544165 cites W2032454468 @default.
- W2519544165 cites W2035506537 @default.
- W2519544165 cites W2039591947 @default.
- W2519544165 cites W2040505630 @default.
- W2519544165 cites W2054602817 @default.
- W2519544165 cites W2056116149 @default.
- W2519544165 cites W2056868695 @default.
- W2519544165 cites W2058731966 @default.
- W2519544165 cites W2061046949 @default.
- W2519544165 cites W2061273524 @default.
- W2519544165 cites W2062934474 @default.
- W2519544165 cites W2065559937 @default.
- W2519544165 cites W2067382033 @default.
- W2519544165 cites W2069354828 @default.
- W2519544165 cites W2069517856 @default.
- W2519544165 cites W2071445091 @default.
- W2519544165 cites W2073990103 @default.
- W2519544165 cites W2079963965 @default.
- W2519544165 cites W2084944923 @default.
- W2519544165 cites W2088474893 @default.
- W2519544165 cites W2091207557 @default.
- W2519544165 cites W2097601813 @default.
- W2519544165 cites W2098337427 @default.
- W2519544165 cites W2099585388 @default.
- W2519544165 cites W2115405795 @default.
- W2519544165 cites W2135293965 @default.
- W2519544165 cites W2137087688 @default.
- W2519544165 cites W2150523054 @default.
- W2519544165 cites W2154808242 @default.
- W2519544165 cites W2158752918 @default.
- W2519544165 cites W2158896941 @default.
- W2519544165 cites W2159058747 @default.
- W2519544165 cites W2166576312 @default.
- W2519544165 cites W2171752105 @default.
- W2519544165 cites W2190238229 @default.
- W2519544165 cites W2461377096 @default.
- W2519544165 cites W2515726777 @default.
- W2519544165 cites W305290540 @default.
- W2519544165 cites W4241201777 @default.
- W2519544165 doi "https://doi.org/10.1016/j.limno.2016.09.004" @default.
- W2519544165 hasPublicationYear "2017" @default.
- W2519544165 type Work @default.
- W2519544165 sameAs 2519544165 @default.
- W2519544165 citedByCount "11" @default.
- W2519544165 countsByYear W25195441652017 @default.
- W2519544165 countsByYear W25195441652018 @default.
- W2519544165 countsByYear W25195441652019 @default.
- W2519544165 countsByYear W25195441652020 @default.
- W2519544165 countsByYear W25195441652021 @default.
- W2519544165 countsByYear W25195441652022 @default.
- W2519544165 crossrefType "journal-article" @default.
- W2519544165 hasAuthorship W2519544165A5013612431 @default.
- W2519544165 hasAuthorship W2519544165A5029391418 @default.
- W2519544165 hasAuthorship W2519544165A5069267114 @default.
- W2519544165 hasAuthorship W2519544165A5071357715 @default.
- W2519544165 hasConcept C119857082 @default.
- W2519544165 hasConcept C119898033 @default.
- W2519544165 hasConcept C134306372 @default.
- W2519544165 hasConcept C154945302 @default.
- W2519544165 hasConcept C161039048 @default.
- W2519544165 hasConcept C182365436 @default.
- W2519544165 hasConcept C205649164 @default.
- W2519544165 hasConcept C2778755073 @default.
- W2519544165 hasConcept C2909208804 @default.
- W2519544165 hasConcept C33923547 @default.
- W2519544165 hasConcept C41008148 @default.
- W2519544165 hasConcept C505870484 @default.
- W2519544165 hasConcept C50644808 @default.
- W2519544165 hasConcept C58640448 @default.