Matches in SemOpenAlex for { <https://semopenalex.org/work/W2519858746> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2519858746 endingPage "87" @default.
- W2519858746 startingPage "69" @default.
- W2519858746 abstract "Mobile devices are now the dominant medium for communications. Humans express various emotions when communicating with others and these communications can be analyzed to deduce their emotional inclinations. Natural language processing techniques have been used to analyze sentiment in text. However, most research involving sentiment analysis in the short message domain (SMS and Twitter) do not account for the presence of non-dictionary words. This chapter investigates the problem of sentiment analysis in short messages and the analysis of emotional swings of an individual over time. This provides an additional layer of information for forensic analysts when investigating suspects. The maximum entropy algorithm is used to classify short messages as positive, negative or neutral. Non-dictionary words are normalized and the impact of normalization and other features on classification is evaluated; in fact, this approach enhances the classification F-score compared with previous work. A forensic tool with an intuitive user interface has been developed to support the extraction and visualization of sentiment information pertaining to persons of interest. In particular, the tool presents an improved approach for identifying mood swings based on short messages sent by subjects. The timeline view provided by the tool helps pinpoint periods of emotional instability that may require further investigation. Additionally, the Apache Solr system used for indexing ensures that a forensic analyst can retrieve the desired information rapidly and efficiently using faceted search queries." @default.
- W2519858746 created "2016-09-23" @default.
- W2519858746 creator A5034683400 @default.
- W2519858746 creator A5084471326 @default.
- W2519858746 creator A5086793766 @default.
- W2519858746 creator A5087434029 @default.
- W2519858746 date "2016-01-01" @default.
- W2519858746 modified "2023-10-16" @default.
- W2519858746 title "Optimizing Short Message Text Sentiment Analysis for Mobile Device Forensics" @default.
- W2519858746 cites W1504488815 @default.
- W2519858746 cites W17944974 @default.
- W2519858746 cites W1964613733 @default.
- W2519858746 cites W1975653240 @default.
- W2519858746 cites W1986486237 @default.
- W2519858746 cites W2012697748 @default.
- W2519858746 cites W2016443085 @default.
- W2519858746 cites W2032793012 @default.
- W2519858746 cites W2089065004 @default.
- W2519858746 cites W2092911974 @default.
- W2519858746 cites W2125962012 @default.
- W2519858746 cites W2137981452 @default.
- W2519858746 cites W2147031008 @default.
- W2519858746 cites W2149167588 @default.
- W2519858746 cites W2155328222 @default.
- W2519858746 cites W2166706824 @default.
- W2519858746 cites W2206298121 @default.
- W2519858746 cites W4205184193 @default.
- W2519858746 cites W4206031910 @default.
- W2519858746 cites W1599296686 @default.
- W2519858746 doi "https://doi.org/10.1007/978-3-319-46279-0_4" @default.
- W2519858746 hasPublicationYear "2016" @default.
- W2519858746 type Work @default.
- W2519858746 sameAs 2519858746 @default.
- W2519858746 citedByCount "5" @default.
- W2519858746 countsByYear W25198587462018 @default.
- W2519858746 countsByYear W25198587462020 @default.
- W2519858746 countsByYear W25198587462021 @default.
- W2519858746 countsByYear W25198587462023 @default.
- W2519858746 crossrefType "book-chapter" @default.
- W2519858746 hasAuthorship W2519858746A5034683400 @default.
- W2519858746 hasAuthorship W2519858746A5084471326 @default.
- W2519858746 hasAuthorship W2519858746A5086793766 @default.
- W2519858746 hasAuthorship W2519858746A5087434029 @default.
- W2519858746 hasBestOaLocation W25198587462 @default.
- W2519858746 hasConcept C124101348 @default.
- W2519858746 hasConcept C136886441 @default.
- W2519858746 hasConcept C144024400 @default.
- W2519858746 hasConcept C154945302 @default.
- W2519858746 hasConcept C166957645 @default.
- W2519858746 hasConcept C19165224 @default.
- W2519858746 hasConcept C204321447 @default.
- W2519858746 hasConcept C23123220 @default.
- W2519858746 hasConcept C36464697 @default.
- W2519858746 hasConcept C41008148 @default.
- W2519858746 hasConcept C4438859 @default.
- W2519858746 hasConcept C66402592 @default.
- W2519858746 hasConcept C75165309 @default.
- W2519858746 hasConcept C95457728 @default.
- W2519858746 hasConceptScore W2519858746C124101348 @default.
- W2519858746 hasConceptScore W2519858746C136886441 @default.
- W2519858746 hasConceptScore W2519858746C144024400 @default.
- W2519858746 hasConceptScore W2519858746C154945302 @default.
- W2519858746 hasConceptScore W2519858746C166957645 @default.
- W2519858746 hasConceptScore W2519858746C19165224 @default.
- W2519858746 hasConceptScore W2519858746C204321447 @default.
- W2519858746 hasConceptScore W2519858746C23123220 @default.
- W2519858746 hasConceptScore W2519858746C36464697 @default.
- W2519858746 hasConceptScore W2519858746C41008148 @default.
- W2519858746 hasConceptScore W2519858746C4438859 @default.
- W2519858746 hasConceptScore W2519858746C66402592 @default.
- W2519858746 hasConceptScore W2519858746C75165309 @default.
- W2519858746 hasConceptScore W2519858746C95457728 @default.
- W2519858746 hasLocation W25198587461 @default.
- W2519858746 hasLocation W25198587462 @default.
- W2519858746 hasLocation W25198587463 @default.
- W2519858746 hasLocation W25198587464 @default.
- W2519858746 hasOpenAccess W2519858746 @default.
- W2519858746 hasPrimaryLocation W25198587461 @default.
- W2519858746 hasRelatedWork W1976035129 @default.
- W2519858746 hasRelatedWork W2012331051 @default.
- W2519858746 hasRelatedWork W2100621367 @default.
- W2519858746 hasRelatedWork W3140834074 @default.
- W2519858746 hasRelatedWork W3173544188 @default.
- W2519858746 hasRelatedWork W4285065125 @default.
- W2519858746 hasRelatedWork W4289831646 @default.
- W2519858746 hasRelatedWork W4379644810 @default.
- W2519858746 hasRelatedWork W78714708 @default.
- W2519858746 hasRelatedWork W2615108550 @default.
- W2519858746 isParatext "false" @default.
- W2519858746 isRetracted "false" @default.
- W2519858746 magId "2519858746" @default.
- W2519858746 workType "book-chapter" @default.