Matches in SemOpenAlex for { <https://semopenalex.org/work/W2519911380> ?p ?o ?g. }
- W2519911380 endingPage "1814" @default.
- W2519911380 startingPage "1802" @default.
- W2519911380 abstract "Summary During recent decades, climate change and re‐oligotrophication have been affecting many lakes. Most long‐term research focuses on large North American and northern European lakes, but climate forcing south of the Alps seems to be different. Furthermore, lake restoration frequently involves smaller lakes (<10 km 2 ) that are often overlooked in long‐term limnological studies despite their importance for local stakeholders. We investigated the effects of climate change and re‐oligotrophication on the thermal structure of Lake Caldonazzo (Italy – southern Alps; area = 5.6 km 2 ; maximum depth = 49 m) for the years 1973–2014. The lake received untreated wastewaters from its catchment until the mid‐1970s, leading to algal blooms, severe hypolimnetic anoxia and fish kills. Afterwards, local government initiated sewage removal that was completed in 1989. We used transparency, phosphorus and chlorophyll concentrations as trophic indicators, air temperature and global circulation indices as climatic indicators and epilimnion depth and temperature, hypolimnion temperature, thermocline depth and Schmidt stability as indicators of thermal structure. For these time series, we determined trend patterns and timing of change points. Epilimnetic temperatures showed an upward shift in 1985. Here, we present an alternative explanation for this observed change that generally has been attributed to global circulation indices. Epilimnetic depth continually increased until 1989, but less markedly afterwards. We suggest that until restoration continued, the increasingly deeper epilimnion absorbed the incoming heat of climate change without increasing epilimnetic temperature. After sewage removal, however, the epilimnion did not deepen enough to prevent an upward shift in epilimnetic temperature. We linked the deepening of the epilimnion to increased water transparency. Hypolimnetic temperatures showed a downward shift in 1998. Hypolimnetic cooling has been seldom observed and was in our case related to specific interactions between re‐oligotrophication, climate and lake depth. Penetration of incident solar radiation was insufficient to heat the hypolimnion (>50% of lake volume), while deeper mixing released accumulated heat from the previous season and earlier stratification trapped colder water in the hypolimnion. We suggest that these combined effects resulted in a decrease in hypolimnetic temperature. Our study indicated that re‐oligotrophication mitigated the effects of climate change, but when re‐oligotrophication was no longer progressing, the effects of climate on thermal structure were perceivable. These changes were site specific and not tied to atmospheric circulation indices. Epilimnetic warming in particular will have repercussions on plankton dynamics. Management of non‐point sources of nutrients will become increasingly important to limit the eutrophication‐like effects of climate change, especially in the case of a warming epilimnion." @default.
- W2519911380 created "2016-09-23" @default.
- W2519911380 creator A5008530858 @default.
- W2519911380 creator A5014873408 @default.
- W2519911380 creator A5043325829 @default.
- W2519911380 creator A5048485931 @default.
- W2519911380 creator A5065041512 @default.
- W2519911380 creator A5089584100 @default.
- W2519911380 date "2016-09-06" @default.
- W2519911380 modified "2023-10-04" @default.
- W2519911380 title "Effects of re-oligotrophication and climate change on lake thermal structure" @default.
- W2519911380 cites W1529010272 @default.
- W2519911380 cites W154912930 @default.
- W2519911380 cites W1580548155 @default.
- W2519911380 cites W1598840950 @default.
- W2519911380 cites W1678442938 @default.
- W2519911380 cites W1681390718 @default.
- W2519911380 cites W1963595133 @default.
- W2519911380 cites W1972568665 @default.
- W2519911380 cites W1973760744 @default.
- W2519911380 cites W1978244585 @default.
- W2519911380 cites W1981679261 @default.
- W2519911380 cites W1985010433 @default.
- W2519911380 cites W1993196697 @default.
- W2519911380 cites W1994584917 @default.
- W2519911380 cites W2001992115 @default.
- W2519911380 cites W2003322983 @default.
- W2519911380 cites W2010098578 @default.
- W2519911380 cites W2015350054 @default.
- W2519911380 cites W2016907280 @default.
- W2519911380 cites W2017610058 @default.
- W2519911380 cites W2021073072 @default.
- W2519911380 cites W2028023558 @default.
- W2519911380 cites W2031362944 @default.
- W2519911380 cites W2034049547 @default.
- W2519911380 cites W2037612458 @default.
- W2519911380 cites W2038516190 @default.
- W2519911380 cites W2039880214 @default.
- W2519911380 cites W2046412660 @default.
- W2519911380 cites W2046597617 @default.
- W2519911380 cites W2051938889 @default.
- W2519911380 cites W2060766914 @default.
- W2519911380 cites W2067287856 @default.
- W2519911380 cites W2068012975 @default.
- W2519911380 cites W2074653687 @default.
- W2519911380 cites W2075329178 @default.
- W2519911380 cites W2078395446 @default.
- W2519911380 cites W2084495297 @default.
- W2519911380 cites W2086799396 @default.
- W2519911380 cites W2087163619 @default.
- W2519911380 cites W2089341883 @default.
- W2519911380 cites W2095606795 @default.
- W2519911380 cites W2103225635 @default.
- W2519911380 cites W2109227096 @default.
- W2519911380 cites W2109633407 @default.
- W2519911380 cites W2110053228 @default.
- W2519911380 cites W2113162751 @default.
- W2519911380 cites W2114600110 @default.
- W2519911380 cites W2118475613 @default.
- W2519911380 cites W2128988308 @default.
- W2519911380 cites W2129267784 @default.
- W2519911380 cites W2135838413 @default.
- W2519911380 cites W2137734568 @default.
- W2519911380 cites W2141442289 @default.
- W2519911380 cites W2142468731 @default.
- W2519911380 cites W2143130009 @default.
- W2519911380 cites W2143653781 @default.
- W2519911380 cites W2144452471 @default.
- W2519911380 cites W2145649717 @default.
- W2519911380 cites W2148609643 @default.
- W2519911380 cites W2153083345 @default.
- W2519911380 cites W2161829879 @default.
- W2519911380 cites W2166368890 @default.
- W2519911380 cites W2202665948 @default.
- W2519911380 cites W2296763827 @default.
- W2519911380 cites W2330529514 @default.
- W2519911380 cites W2338026153 @default.
- W2519911380 cites W4238235003 @default.
- W2519911380 cites W4251656773 @default.
- W2519911380 cites W4256501216 @default.
- W2519911380 doi "https://doi.org/10.1111/fwb.12819" @default.
- W2519911380 hasPublicationYear "2016" @default.
- W2519911380 type Work @default.
- W2519911380 sameAs 2519911380 @default.
- W2519911380 citedByCount "28" @default.
- W2519911380 countsByYear W25199113802017 @default.
- W2519911380 countsByYear W25199113802018 @default.
- W2519911380 countsByYear W25199113802019 @default.
- W2519911380 countsByYear W25199113802020 @default.
- W2519911380 countsByYear W25199113802021 @default.
- W2519911380 countsByYear W25199113802022 @default.
- W2519911380 countsByYear W25199113802023 @default.
- W2519911380 crossrefType "journal-article" @default.
- W2519911380 hasAuthorship W2519911380A5008530858 @default.
- W2519911380 hasAuthorship W2519911380A5014873408 @default.
- W2519911380 hasAuthorship W2519911380A5043325829 @default.
- W2519911380 hasAuthorship W2519911380A5048485931 @default.
- W2519911380 hasAuthorship W2519911380A5065041512 @default.