Matches in SemOpenAlex for { <https://semopenalex.org/work/W2520093669> ?p ?o ?g. }
- W2520093669 abstract "Author(s): Foulds, James Richard | Advisor(s): Smyth, Padhraic | Abstract: In the era of the internet, we are connected to an overwhelming abundance of information. As more facets of our lives become digitized, there is a growing need for automatic tools to help us find the content we care about. To tackle the problem of information overload, a standard machine learning approach is to perform dimensionality reduction, transforming complicated high-dimensional data into a manageable, low-dimensional form. Probabilistic latent variable models provide a powerful and elegant framework for performing this transformation in a principled way. This thesis makes several advances for modeling two of the most ubiquitous types of online information: networks and text data. Our first contribution is to develop a model for social networks as they vary over time. The model recovers latent feature representations of each individual, and tracks these representations as they change dynamically. We also show how to use text information to interpret these latent features. Continuing the theme of modeling networks and text data, we next build a model of citation networks. The model finds influential scientific articles and the influence relationships between the articles, potentially opening the door for automated exploratory tools for scientists. The increasing prevalence of web-scale data sets provides both an opportunity and a challenge. With more data we can fit more accurate models, as long as our learning algorithms are up to the task. To meet this challenge, we present an algorithm for learning latent Dirichlet allocation topic models quickly, accurately and at scale. The algorithm leverages stochastic techniques, as well as the collapsed representation of the model. We use it to build a topic model on 4.6 million articles from the open encyclopedia Wikipedia in a matter of hours, and on a corpus of 1740 machine learning articles from the NIPS conference in seconds. Finally, evaluating the predictive performance of topic models is an important yet computationally difficult task. We develop one algorithm for comparing topic models, and another for measuring the progress of learning algorithms for these models. The latter method achieves better estimates than previous algorithms, in many cases with an order of magnitude less computational effort." @default.
- W2520093669 created "2016-09-23" @default.
- W2520093669 creator A5010326834 @default.
- W2520093669 date "2014-01-01" @default.
- W2520093669 modified "2023-09-27" @default.
- W2520093669 title "Latent Variable Modeling for Networks and Text: Algorithms, Models and Evaluation Techniques" @default.
- W2520093669 cites W114560312 @default.
- W2520093669 cites W1492638184 @default.
- W2520093669 cites W1503398984 @default.
- W2520093669 cites W1506602547 @default.
- W2520093669 cites W1513873506 @default.
- W2520093669 cites W1516111018 @default.
- W2520093669 cites W1517555081 @default.
- W2520093669 cites W1528056001 @default.
- W2520093669 cites W1528905581 @default.
- W2520093669 cites W1536734652 @default.
- W2520093669 cites W1546171873 @default.
- W2520093669 cites W1559926086 @default.
- W2520093669 cites W155995321 @default.
- W2520093669 cites W1638753340 @default.
- W2520093669 cites W1686266550 @default.
- W2520093669 cites W1802356529 @default.
- W2520093669 cites W1813659000 @default.
- W2520093669 cites W1880262756 @default.
- W2520093669 cites W1889660637 @default.
- W2520093669 cites W190008395 @default.
- W2520093669 cites W1904365287 @default.
- W2520093669 cites W1934021597 @default.
- W2520093669 cites W1947594277 @default.
- W2520093669 cites W1967502589 @default.
- W2520093669 cites W1970043789 @default.
- W2520093669 cites W1977186326 @default.
- W2520093669 cites W1984251878 @default.
- W2520093669 cites W1985741469 @default.
- W2520093669 cites W1986966428 @default.
- W2520093669 cites W1991236722 @default.
- W2520093669 cites W1994616650 @default.
- W2520093669 cites W2000836282 @default.
- W2520093669 cites W2001975024 @default.
- W2520093669 cites W2005706022 @default.
- W2520093669 cites W2012213783 @default.
- W2520093669 cites W2013661955 @default.
- W2520093669 cites W2019144999 @default.
- W2520093669 cites W2020999234 @default.
- W2520093669 cites W2025720061 @default.
- W2520093669 cites W2026799324 @default.
- W2520093669 cites W2039750798 @default.
- W2520093669 cites W2041517243 @default.
- W2520093669 cites W2046346568 @default.
- W2520093669 cites W2047229728 @default.
- W2520093669 cites W2049078855 @default.
- W2520093669 cites W2049633694 @default.
- W2520093669 cites W2054333436 @default.
- W2520093669 cites W2056760934 @default.
- W2520093669 cites W2057954853 @default.
- W2520093669 cites W2061901927 @default.
- W2520093669 cites W2066459332 @default.
- W2520093669 cites W2066636486 @default.
- W2520093669 cites W2069429561 @default.
- W2520093669 cites W2071128523 @default.
- W2520093669 cites W2076844992 @default.
- W2520093669 cites W2080972498 @default.
- W2520093669 cites W2083875149 @default.
- W2520093669 cites W2087035354 @default.
- W2520093669 cites W2094673287 @default.
- W2520093669 cites W2098047130 @default.
- W2520093669 cites W2098126593 @default.
- W2520093669 cites W2102111939 @default.
- W2520093669 cites W2102220231 @default.
- W2520093669 cites W2102409316 @default.
- W2520093669 cites W2103587173 @default.
- W2520093669 cites W2105875671 @default.
- W2520093669 cites W2106813372 @default.
- W2520093669 cites W2107107106 @default.
- W2520093669 cites W2107884625 @default.
- W2520093669 cites W2108346334 @default.
- W2520093669 cites W2112870206 @default.
- W2520093669 cites W2116064496 @default.
- W2520093669 cites W2116137244 @default.
- W2520093669 cites W2116825644 @default.
- W2520093669 cites W2123549998 @default.
- W2520093669 cites W2125027820 @default.
- W2520093669 cites W2127805060 @default.
- W2520093669 cites W2128438887 @default.
- W2520093669 cites W2130339025 @default.
- W2520093669 cites W2130428211 @default.
- W2520093669 cites W2131689821 @default.
- W2520093669 cites W2131939418 @default.
- W2520093669 cites W2133487567 @default.
- W2520093669 cites W2135046866 @default.
- W2520093669 cites W2135163779 @default.
- W2520093669 cites W2135790056 @default.
- W2520093669 cites W2138309709 @default.
- W2520093669 cites W2138621811 @default.
- W2520093669 cites W2140124448 @default.
- W2520093669 cites W2141056424 @default.
- W2520093669 cites W2143144851 @default.
- W2520093669 cites W2144100511 @default.
- W2520093669 cites W2146341620 @default.
- W2520093669 cites W2147152072 @default.