Matches in SemOpenAlex for { <https://semopenalex.org/work/W2520241474> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2520241474 abstract "With the deployment of modern infrastructures for public transit, several studies have analyzed the transition patterns of people by using smart card data and have characterized the areas. In this paper, we propose a novel embedding method to obtain a vector representation of a geospatial area using transition patterns of people from the large-scale data of their smart cards. We extend a network embedding by taking into account geographical constraints on people transitioning in the real world. We conducted an experiment using smart card data in a large network of railroads in Kansai areas in Japan. We obtained a vector representation of each railroad station using the proposed embedding method. The results show that the proposed method performs better than the existing network embedding methods in the task of multi-label classification for purposes of going to a railroad station. Our proposed method can contribute to predicting people flow by discovering underlying representations of geospatial areas from mobility data." @default.
- W2520241474 created "2016-09-23" @default.
- W2520241474 creator A5014750522 @default.
- W2520241474 creator A5021551740 @default.
- W2520241474 creator A5021614922 @default.
- W2520241474 creator A5047082556 @default.
- W2520241474 creator A5064203745 @default.
- W2520241474 creator A5067094699 @default.
- W2520241474 creator A5071470375 @default.
- W2520241474 date "2016-09-12" @default.
- W2520241474 modified "2023-09-30" @default.
- W2520241474 title "Representation learning for geospatial areas using large-scale mobility data from smart card" @default.
- W2520241474 cites W1955103627 @default.
- W2520241474 cites W2036380561 @default.
- W2520241474 cites W2041371899 @default.
- W2520241474 cites W2067000091 @default.
- W2520241474 cites W2091745653 @default.
- W2520241474 cites W2136317921 @default.
- W2520241474 cites W2153635508 @default.
- W2520241474 cites W2163922914 @default.
- W2520241474 cites W2343755894 @default.
- W2520241474 cites W2489175592 @default.
- W2520241474 cites W3104097132 @default.
- W2520241474 cites W3104717349 @default.
- W2520241474 cites W3105705953 @default.
- W2520241474 doi "https://doi.org/10.1145/2968219.2968416" @default.
- W2520241474 hasPublicationYear "2016" @default.
- W2520241474 type Work @default.
- W2520241474 sameAs 2520241474 @default.
- W2520241474 citedByCount "5" @default.
- W2520241474 countsByYear W25202414742017 @default.
- W2520241474 countsByYear W25202414742018 @default.
- W2520241474 countsByYear W25202414742019 @default.
- W2520241474 countsByYear W25202414742021 @default.
- W2520241474 countsByYear W25202414742023 @default.
- W2520241474 crossrefType "proceedings-article" @default.
- W2520241474 hasAuthorship W2520241474A5014750522 @default.
- W2520241474 hasAuthorship W2520241474A5021551740 @default.
- W2520241474 hasAuthorship W2520241474A5021614922 @default.
- W2520241474 hasAuthorship W2520241474A5047082556 @default.
- W2520241474 hasAuthorship W2520241474A5064203745 @default.
- W2520241474 hasAuthorship W2520241474A5067094699 @default.
- W2520241474 hasAuthorship W2520241474A5071470375 @default.
- W2520241474 hasConcept C105339364 @default.
- W2520241474 hasConcept C110406131 @default.
- W2520241474 hasConcept C111919701 @default.
- W2520241474 hasConcept C124101348 @default.
- W2520241474 hasConcept C154945302 @default.
- W2520241474 hasConcept C17744445 @default.
- W2520241474 hasConcept C199539241 @default.
- W2520241474 hasConcept C205649164 @default.
- W2520241474 hasConcept C2776359362 @default.
- W2520241474 hasConcept C2778755073 @default.
- W2520241474 hasConcept C38652104 @default.
- W2520241474 hasConcept C41008148 @default.
- W2520241474 hasConcept C41608201 @default.
- W2520241474 hasConcept C58640448 @default.
- W2520241474 hasConcept C62649853 @default.
- W2520241474 hasConcept C75684735 @default.
- W2520241474 hasConcept C94625758 @default.
- W2520241474 hasConcept C9770341 @default.
- W2520241474 hasConceptScore W2520241474C105339364 @default.
- W2520241474 hasConceptScore W2520241474C110406131 @default.
- W2520241474 hasConceptScore W2520241474C111919701 @default.
- W2520241474 hasConceptScore W2520241474C124101348 @default.
- W2520241474 hasConceptScore W2520241474C154945302 @default.
- W2520241474 hasConceptScore W2520241474C17744445 @default.
- W2520241474 hasConceptScore W2520241474C199539241 @default.
- W2520241474 hasConceptScore W2520241474C205649164 @default.
- W2520241474 hasConceptScore W2520241474C2776359362 @default.
- W2520241474 hasConceptScore W2520241474C2778755073 @default.
- W2520241474 hasConceptScore W2520241474C38652104 @default.
- W2520241474 hasConceptScore W2520241474C41008148 @default.
- W2520241474 hasConceptScore W2520241474C41608201 @default.
- W2520241474 hasConceptScore W2520241474C58640448 @default.
- W2520241474 hasConceptScore W2520241474C62649853 @default.
- W2520241474 hasConceptScore W2520241474C75684735 @default.
- W2520241474 hasConceptScore W2520241474C94625758 @default.
- W2520241474 hasConceptScore W2520241474C9770341 @default.
- W2520241474 hasLocation W25202414741 @default.
- W2520241474 hasOpenAccess W2520241474 @default.
- W2520241474 hasPrimaryLocation W25202414741 @default.
- W2520241474 hasRelatedWork W2560912598 @default.
- W2520241474 hasRelatedWork W2962921631 @default.
- W2520241474 hasRelatedWork W2965880752 @default.
- W2520241474 hasRelatedWork W2980162441 @default.
- W2520241474 hasRelatedWork W2989058351 @default.
- W2520241474 hasRelatedWork W3135838879 @default.
- W2520241474 hasRelatedWork W4296046333 @default.
- W2520241474 hasRelatedWork W4300413032 @default.
- W2520241474 hasRelatedWork W4310473371 @default.
- W2520241474 hasRelatedWork W4313029192 @default.
- W2520241474 isParatext "false" @default.
- W2520241474 isRetracted "false" @default.
- W2520241474 magId "2520241474" @default.
- W2520241474 workType "article" @default.