Matches in SemOpenAlex for { <https://semopenalex.org/work/W2520303392> ?p ?o ?g. }
Showing items 1 to 46 of
46
with 100 items per page.
- W2520303392 abstract "In the evolving technology of big data, high velocity data streams play a vital role since pattern of data is being changed over time. The temporal pattern change in data stream leads to a concept evolution called concept drift where statistical properties of data differs from time to time and the drift is taken into account in order to update old and outdated classifier and make it adaptable to new data arrival and pattern change over. In order to classify the stream data, a scalable efficient classification algorithm is to be designed which perfectly classifies the data with minimizing misclassification rate in presence of concept drift due to high velocity data. Training time of the classifier must be reduced in order to reduce computational complexity. In this work, a novel algorithm has been implemented using Random Forest with stratified random sampling and Bloom filtering in order to reduce the training time and to handle high velocity data. Experimental results are shown by performing classification with sampling, classification with filtering and classification with sampling and filtering. This enhances the performance of the algorithm by decreasing the training time and testing time of the classifier with negligible compromise in accuracy of classification." @default.
- W2520303392 created "2016-09-23" @default.
- W2520303392 creator A5076991978 @default.
- W2520303392 creator A5078403865 @default.
- W2520303392 date "2016-04-01" @default.
- W2520303392 modified "2023-10-18" @default.
- W2520303392 title "Streaming data classification" @default.
- W2520303392 cites W1736726159 @default.
- W2520303392 cites W2010657328 @default.
- W2520303392 cites W2023695588 @default.
- W2520303392 cites W2026324356 @default.
- W2520303392 cites W2031655803 @default.
- W2520303392 cites W2038624061 @default.
- W2520303392 cites W2062582792 @default.
- W2520303392 cites W2068714596 @default.
- W2520303392 cites W2074633331 @default.
- W2520303392 cites W2121938636 @default.
- W2520303392 doi "https://doi.org/10.1109/icrtit.2016.7569525" @default.
- W2520303392 hasPublicationYear "2016" @default.
- W2520303392 type Work @default.
- W2520303392 sameAs 2520303392 @default.
- W2520303392 citedByCount "3" @default.
- W2520303392 countsByYear W25203033922019 @default.
- W2520303392 countsByYear W25203033922021 @default.
- W2520303392 crossrefType "proceedings-article" @default.
- W2520303392 hasAuthorship W2520303392A5076991978 @default.
- W2520303392 hasAuthorship W2520303392A5078403865 @default.
- W2520303392 hasConcept C41008148 @default.
- W2520303392 hasConceptScore W2520303392C41008148 @default.
- W2520303392 hasLocation W25203033921 @default.
- W2520303392 hasOpenAccess W2520303392 @default.
- W2520303392 hasPrimaryLocation W25203033921 @default.
- W2520303392 hasRelatedWork W2093578348 @default.
- W2520303392 hasRelatedWork W2350741829 @default.
- W2520303392 hasRelatedWork W2358668433 @default.
- W2520303392 hasRelatedWork W2376932109 @default.
- W2520303392 hasRelatedWork W2382290278 @default.
- W2520303392 hasRelatedWork W2390279801 @default.
- W2520303392 hasRelatedWork W2748952813 @default.
- W2520303392 hasRelatedWork W2766271392 @default.
- W2520303392 hasRelatedWork W2899084033 @default.
- W2520303392 hasRelatedWork W3004735627 @default.
- W2520303392 isParatext "false" @default.
- W2520303392 isRetracted "false" @default.
- W2520303392 magId "2520303392" @default.
- W2520303392 workType "article" @default.