Matches in SemOpenAlex for { <https://semopenalex.org/work/W2520527370> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2520527370 abstract "Many scientific and engineering fields employ computer simulations of specific phenomena to help solve complex problems. Supercomputers and other high performance computing machines are regularly used to perform these scientific simulations. The resulting data then needs to be analyzed and visualized, which is difficult when the data is large. One approach to producing visualizations faster is to generate them in parallel. Many challenges remain, though, when attempting to analyze and visualize large data in parallel, while maintaining good performance and scalability.The size of the data is one challenge. When data size becomes very large, the I/O overhead from loading the data becomes a bottleneck, which could hinder performance. In addition, some visualization algorithms have unknown communication and computational load, which results in poor workload distribution and load balancing. This load imbalance hinders overall scalability. Another possible reason for poor parallel performance is that the method does not take advantage of the specific hardware architecture of the host machine.In order to meet these challenges, we present methods to parallelize several visualization techniques. First, a scalable shared memory rendering technique was found by adapting established parallel rendering methods to a shared memory architecture. Three rasterization methods, including sort-first, sort-last, and a hybrid method, were tested on a large shared-memory machine. Next, parallel streamline generation in static flow fields, due to the nature of the problem, suffers from high load imbalance. To make the computation more load balanced, we analyzed the flow field and estimated the workload of each block in the flow field. A load balanced partitioning of data blocks was then computed from this workload estimation. In our tests, we were able to scale up to thousands of processes while using hundreds of thousands of seeds. For time-varying flow fields, the Finite-Time Lyapunov Exponent (FTLE) has proven to be a powerful analysis tool. In order to achieve scalable parallel FTLE computation, we divided all available processes into several groups, and pipelined particles through these process groups. This pipelining structure resulted in faster I/O and computation times. Using this technique, we were able to advect millions of seeds and scale up to tens of thousands of processes." @default.
- W2520527370 created "2016-09-23" @default.
- W2520527370 creator A5019559208 @default.
- W2520527370 creator A5065630217 @default.
- W2520527370 date "2012-01-01" @default.
- W2520527370 modified "2023-09-27" @default.
- W2520527370 title "High-concurrency visualization on supercomputers" @default.
- W2520527370 hasPublicationYear "2012" @default.
- W2520527370 type Work @default.
- W2520527370 sameAs 2520527370 @default.
- W2520527370 citedByCount "0" @default.
- W2520527370 crossrefType "journal-article" @default.
- W2520527370 hasAuthorship W2520527370A5019559208 @default.
- W2520527370 hasAuthorship W2520527370A5065630217 @default.
- W2520527370 hasConcept C111919701 @default.
- W2520527370 hasConcept C11413529 @default.
- W2520527370 hasConcept C120314980 @default.
- W2520527370 hasConcept C121684516 @default.
- W2520527370 hasConcept C124101348 @default.
- W2520527370 hasConcept C133875982 @default.
- W2520527370 hasConcept C138959212 @default.
- W2520527370 hasConcept C149635348 @default.
- W2520527370 hasConcept C173608175 @default.
- W2520527370 hasConcept C187691185 @default.
- W2520527370 hasConcept C193702766 @default.
- W2520527370 hasConcept C205711294 @default.
- W2520527370 hasConcept C2524010 @default.
- W2520527370 hasConcept C2778476105 @default.
- W2520527370 hasConcept C2780513914 @default.
- W2520527370 hasConcept C33923547 @default.
- W2520527370 hasConcept C36464697 @default.
- W2520527370 hasConcept C41008148 @default.
- W2520527370 hasConcept C45374587 @default.
- W2520527370 hasConcept C48044578 @default.
- W2520527370 hasConcept C83283714 @default.
- W2520527370 hasConcept C91481028 @default.
- W2520527370 hasConceptScore W2520527370C111919701 @default.
- W2520527370 hasConceptScore W2520527370C11413529 @default.
- W2520527370 hasConceptScore W2520527370C120314980 @default.
- W2520527370 hasConceptScore W2520527370C121684516 @default.
- W2520527370 hasConceptScore W2520527370C124101348 @default.
- W2520527370 hasConceptScore W2520527370C133875982 @default.
- W2520527370 hasConceptScore W2520527370C138959212 @default.
- W2520527370 hasConceptScore W2520527370C149635348 @default.
- W2520527370 hasConceptScore W2520527370C173608175 @default.
- W2520527370 hasConceptScore W2520527370C187691185 @default.
- W2520527370 hasConceptScore W2520527370C193702766 @default.
- W2520527370 hasConceptScore W2520527370C205711294 @default.
- W2520527370 hasConceptScore W2520527370C2524010 @default.
- W2520527370 hasConceptScore W2520527370C2778476105 @default.
- W2520527370 hasConceptScore W2520527370C2780513914 @default.
- W2520527370 hasConceptScore W2520527370C33923547 @default.
- W2520527370 hasConceptScore W2520527370C36464697 @default.
- W2520527370 hasConceptScore W2520527370C41008148 @default.
- W2520527370 hasConceptScore W2520527370C45374587 @default.
- W2520527370 hasConceptScore W2520527370C48044578 @default.
- W2520527370 hasConceptScore W2520527370C83283714 @default.
- W2520527370 hasConceptScore W2520527370C91481028 @default.
- W2520527370 hasLocation W25205273701 @default.
- W2520527370 hasOpenAccess W2520527370 @default.
- W2520527370 hasPrimaryLocation W25205273701 @default.
- W2520527370 hasRelatedWork W107761482 @default.
- W2520527370 hasRelatedWork W109318213 @default.
- W2520527370 hasRelatedWork W2029390018 @default.
- W2520527370 hasRelatedWork W2090077390 @default.
- W2520527370 hasRelatedWork W2160906706 @default.
- W2520527370 hasRelatedWork W2189101259 @default.
- W2520527370 hasRelatedWork W2322852459 @default.
- W2520527370 hasRelatedWork W2741570905 @default.
- W2520527370 hasRelatedWork W2857048390 @default.
- W2520527370 hasRelatedWork W2902949074 @default.
- W2520527370 hasRelatedWork W2906718912 @default.
- W2520527370 hasRelatedWork W2911892531 @default.
- W2520527370 hasRelatedWork W2914999476 @default.
- W2520527370 hasRelatedWork W2964998636 @default.
- W2520527370 hasRelatedWork W3014335040 @default.
- W2520527370 hasRelatedWork W3045331349 @default.
- W2520527370 hasRelatedWork W3095177235 @default.
- W2520527370 hasRelatedWork W3122419405 @default.
- W2520527370 hasRelatedWork W3197417079 @default.
- W2520527370 hasRelatedWork W3213318488 @default.
- W2520527370 isParatext "false" @default.
- W2520527370 isRetracted "false" @default.
- W2520527370 magId "2520527370" @default.
- W2520527370 workType "article" @default.