Matches in SemOpenAlex for { <https://semopenalex.org/work/W2520594445> ?p ?o ?g. }
- W2520594445 endingPage "23" @default.
- W2520594445 startingPage "406" @default.
- W2520594445 abstract "Segmentation of liver tumors from Computed Tomography (CT) and tumor burden analysis play an important role in the choice of therapeutic strategies for liver diseases and treatment monitoring. In this paper, a new segmentation method for liver tumors from contrast-enhanced CT imaging is proposed. As manual segmentation of tumors for liver treatment planning is both labor intensive and time-consuming, a highly accurate automatic tumor segmentation is desired. The proposed framework is fully automatic requiring no user interaction. The proposed segmentation evaluated on real-world clinical data from patients is based on a hybrid method integrating cuckoo optimization and fuzzy c-means algorithm with random walkers algorithm. The accuracy of the proposed method was validated using a clinical liver dataset containing one of the highest numbers of tumors utilized for liver tumor segmentation containing 127 tumors in total with further validation of the results by a consultant radiologist. The proposed method was able to achieve one of the highest accuracies reported in the literature for liver tumor segmentation compared to other segmentation methods with a mean overlap error of 22.78 % and dice similarity coefficient of 0.75 in 3Dircadb dataset and a mean overlap error of 15.61 % and dice similarity coefficient of 0.81 in MIDAS dataset. The proposed method was able to outperform most other tumor segmentation methods reported in the literature while representing an overlap error improvement of 6 % compared to one of the best performing automatic methods in the literature. The proposed framework was able to provide consistently accurate results considering the number of tumors and the variations in tumor contrast enhancements and tumor appearances while the tumor burden was estimated with a mean error of 0.84 % in 3Dircadb dataset." @default.
- W2520594445 created "2016-09-23" @default.
- W2520594445 creator A5042932626 @default.
- W2520594445 creator A5045735100 @default.
- W2520594445 creator A5055914678 @default.
- W2520594445 creator A5086371955 @default.
- W2520594445 date "2016-01-01" @default.
- W2520594445 modified "2023-09-23" @default.
- W2520594445 title "Automatic liver tumor segmentation on computed tomography for patient treatment planning and monitoring." @default.
- W2520594445 cites W1500681480 @default.
- W2520594445 cites W1680164276 @default.
- W2520594445 cites W1909740415 @default.
- W2520594445 cites W1962291688 @default.
- W2520594445 cites W1966707541 @default.
- W2520594445 cites W1968443695 @default.
- W2520594445 cites W1975053487 @default.
- W2520594445 cites W1979030477 @default.
- W2520594445 cites W1979988663 @default.
- W2520594445 cites W1984876200 @default.
- W2520594445 cites W1989175303 @default.
- W2520594445 cites W1990404563 @default.
- W2520594445 cites W2003769379 @default.
- W2520594445 cites W2015205751 @default.
- W2520594445 cites W2019607817 @default.
- W2520594445 cites W2021379433 @default.
- W2520594445 cites W2034613862 @default.
- W2520594445 cites W2079554464 @default.
- W2520594445 cites W2096900586 @default.
- W2520594445 cites W2108735112 @default.
- W2520594445 cites W2108859253 @default.
- W2520594445 cites W2110511424 @default.
- W2520594445 cites W2110996227 @default.
- W2520594445 cites W2115242586 @default.
- W2520594445 cites W2116004308 @default.
- W2520594445 cites W2125637308 @default.
- W2520594445 cites W2144795120 @default.
- W2520594445 cites W2153431772 @default.
- W2520594445 cites W2156769441 @default.
- W2520594445 cites W2160077402 @default.
- W2520594445 cites W2161430726 @default.
- W2520594445 cites W2161920425 @default.
- W2520594445 cites W2165012164 @default.
- W2520594445 cites W2323792602 @default.
- W2520594445 cites W2398721509 @default.
- W2520594445 doi "https://doi.org/10.17179/excli2016-402" @default.
- W2520594445 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4983804" @default.
- W2520594445 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27540353" @default.
- W2520594445 hasPublicationYear "2016" @default.
- W2520594445 type Work @default.
- W2520594445 sameAs 2520594445 @default.
- W2520594445 citedByCount "15" @default.
- W2520594445 countsByYear W25205944452016 @default.
- W2520594445 countsByYear W25205944452017 @default.
- W2520594445 countsByYear W25205944452018 @default.
- W2520594445 countsByYear W25205944452019 @default.
- W2520594445 countsByYear W25205944452020 @default.
- W2520594445 countsByYear W25205944452021 @default.
- W2520594445 countsByYear W25205944452022 @default.
- W2520594445 crossrefType "journal-article" @default.
- W2520594445 hasAuthorship W2520594445A5042932626 @default.
- W2520594445 hasAuthorship W2520594445A5045735100 @default.
- W2520594445 hasAuthorship W2520594445A5055914678 @default.
- W2520594445 hasAuthorship W2520594445A5086371955 @default.
- W2520594445 hasConcept C103278499 @default.
- W2520594445 hasConcept C115961682 @default.
- W2520594445 hasConcept C124504099 @default.
- W2520594445 hasConcept C126838900 @default.
- W2520594445 hasConcept C153180895 @default.
- W2520594445 hasConcept C154945302 @default.
- W2520594445 hasConcept C163892561 @default.
- W2520594445 hasConcept C169258074 @default.
- W2520594445 hasConcept C201645570 @default.
- W2520594445 hasConcept C2776964913 @default.
- W2520594445 hasConcept C2778019345 @default.
- W2520594445 hasConcept C41008148 @default.
- W2520594445 hasConcept C502942594 @default.
- W2520594445 hasConcept C509974204 @default.
- W2520594445 hasConcept C65885262 @default.
- W2520594445 hasConcept C71924100 @default.
- W2520594445 hasConcept C89600930 @default.
- W2520594445 hasConceptScore W2520594445C103278499 @default.
- W2520594445 hasConceptScore W2520594445C115961682 @default.
- W2520594445 hasConceptScore W2520594445C124504099 @default.
- W2520594445 hasConceptScore W2520594445C126838900 @default.
- W2520594445 hasConceptScore W2520594445C153180895 @default.
- W2520594445 hasConceptScore W2520594445C154945302 @default.
- W2520594445 hasConceptScore W2520594445C163892561 @default.
- W2520594445 hasConceptScore W2520594445C169258074 @default.
- W2520594445 hasConceptScore W2520594445C201645570 @default.
- W2520594445 hasConceptScore W2520594445C2776964913 @default.
- W2520594445 hasConceptScore W2520594445C2778019345 @default.
- W2520594445 hasConceptScore W2520594445C41008148 @default.
- W2520594445 hasConceptScore W2520594445C502942594 @default.
- W2520594445 hasConceptScore W2520594445C509974204 @default.
- W2520594445 hasConceptScore W2520594445C65885262 @default.
- W2520594445 hasConceptScore W2520594445C71924100 @default.
- W2520594445 hasConceptScore W2520594445C89600930 @default.
- W2520594445 hasLocation W25205944451 @default.