Matches in SemOpenAlex for { <https://semopenalex.org/work/W2520664327> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2520664327 abstract "We study cooperative spectrum sensing in cognitive radio networks (CRN) using machine learning techniques in this paper. A low-dimensional probability vector is proposed as the feature vector for machine learning based classification, instead of the N-dimensional energy vector in a CRN with a single primary user (PU) and N secondary users (SUs). This proposed method down-converts a high-dimensional feature vector to a constant two-dimensional feature vector for machine learning techniques while keeping the same spectrum sensing performance if not better. Due to its lower dimension, the probability vector based classification is capable of having a smaller training duration and a shorter classification time for testing vectors." @default.
- W2520664327 created "2016-09-23" @default.
- W2520664327 creator A5010666922 @default.
- W2520664327 creator A5032326710 @default.
- W2520664327 creator A5047582265 @default.
- W2520664327 creator A5053897661 @default.
- W2520664327 date "2016-04-01" @default.
- W2520664327 modified "2023-10-16" @default.
- W2520664327 title "Machine learning techniques with probability vector for cooperative spectrum sensing in cognitive radio networks" @default.
- W2520664327 cites W1967514042 @default.
- W2520664327 cites W2025359905 @default.
- W2520664327 cites W2065424480 @default.
- W2520664327 cites W2069292411 @default.
- W2520664327 cites W2146315101 @default.
- W2520664327 cites W2150397642 @default.
- W2520664327 cites W2534769149 @default.
- W2520664327 cites W4238591469 @default.
- W2520664327 doi "https://doi.org/10.1109/wcnc.2016.7564840" @default.
- W2520664327 hasPublicationYear "2016" @default.
- W2520664327 type Work @default.
- W2520664327 sameAs 2520664327 @default.
- W2520664327 citedByCount "53" @default.
- W2520664327 countsByYear W25206643272017 @default.
- W2520664327 countsByYear W25206643272018 @default.
- W2520664327 countsByYear W25206643272019 @default.
- W2520664327 countsByYear W25206643272020 @default.
- W2520664327 countsByYear W25206643272021 @default.
- W2520664327 countsByYear W25206643272022 @default.
- W2520664327 countsByYear W25206643272023 @default.
- W2520664327 crossrefType "proceedings-article" @default.
- W2520664327 hasAuthorship W2520664327A5010666922 @default.
- W2520664327 hasAuthorship W2520664327A5032326710 @default.
- W2520664327 hasAuthorship W2520664327A5047582265 @default.
- W2520664327 hasAuthorship W2520664327A5053897661 @default.
- W2520664327 hasConcept C119857082 @default.
- W2520664327 hasConcept C121332964 @default.
- W2520664327 hasConcept C12267149 @default.
- W2520664327 hasConcept C138885662 @default.
- W2520664327 hasConcept C149946192 @default.
- W2520664327 hasConcept C153180895 @default.
- W2520664327 hasConcept C154945302 @default.
- W2520664327 hasConcept C156778621 @default.
- W2520664327 hasConcept C202444582 @default.
- W2520664327 hasConcept C2776401178 @default.
- W2520664327 hasConcept C33676613 @default.
- W2520664327 hasConcept C33923547 @default.
- W2520664327 hasConcept C41008148 @default.
- W2520664327 hasConcept C41895202 @default.
- W2520664327 hasConcept C555944384 @default.
- W2520664327 hasConcept C62520636 @default.
- W2520664327 hasConcept C76155785 @default.
- W2520664327 hasConcept C83665646 @default.
- W2520664327 hasConceptScore W2520664327C119857082 @default.
- W2520664327 hasConceptScore W2520664327C121332964 @default.
- W2520664327 hasConceptScore W2520664327C12267149 @default.
- W2520664327 hasConceptScore W2520664327C138885662 @default.
- W2520664327 hasConceptScore W2520664327C149946192 @default.
- W2520664327 hasConceptScore W2520664327C153180895 @default.
- W2520664327 hasConceptScore W2520664327C154945302 @default.
- W2520664327 hasConceptScore W2520664327C156778621 @default.
- W2520664327 hasConceptScore W2520664327C202444582 @default.
- W2520664327 hasConceptScore W2520664327C2776401178 @default.
- W2520664327 hasConceptScore W2520664327C33676613 @default.
- W2520664327 hasConceptScore W2520664327C33923547 @default.
- W2520664327 hasConceptScore W2520664327C41008148 @default.
- W2520664327 hasConceptScore W2520664327C41895202 @default.
- W2520664327 hasConceptScore W2520664327C555944384 @default.
- W2520664327 hasConceptScore W2520664327C62520636 @default.
- W2520664327 hasConceptScore W2520664327C76155785 @default.
- W2520664327 hasConceptScore W2520664327C83665646 @default.
- W2520664327 hasLocation W25206643271 @default.
- W2520664327 hasOpenAccess W2520664327 @default.
- W2520664327 hasPrimaryLocation W25206643271 @default.
- W2520664327 hasRelatedWork W1963522536 @default.
- W2520664327 hasRelatedWork W2032719615 @default.
- W2520664327 hasRelatedWork W2048427509 @default.
- W2520664327 hasRelatedWork W2052881466 @default.
- W2520664327 hasRelatedWork W2330895226 @default.
- W2520664327 hasRelatedWork W2391464224 @default.
- W2520664327 hasRelatedWork W2775301649 @default.
- W2520664327 hasRelatedWork W2994439156 @default.
- W2520664327 hasRelatedWork W4233632157 @default.
- W2520664327 hasRelatedWork W4287812917 @default.
- W2520664327 isParatext "false" @default.
- W2520664327 isRetracted "false" @default.
- W2520664327 magId "2520664327" @default.
- W2520664327 workType "article" @default.