Matches in SemOpenAlex for { <https://semopenalex.org/work/W2520786642> ?p ?o ?g. }
- W2520786642 endingPage "85" @default.
- W2520786642 startingPage "77" @default.
- W2520786642 abstract "Intraoperative awareness refers that patients can recall aspects of their surgery after being put under general anesthesia. This distressing complication causes affected patients to be conscious and probably feel pain, leading to emotional trauma or other sequelae. Monitoring and administrating the depth of anesthesia is necessary to prevent patients from awareness during a medical operation. In this paper, we analyzed the electroencephalograms (EEGs) of patients to characterize their anesthesia. The data set, “awareness” and “anesthesia” groups, each contained 558 samples, including patients who had undergone different types of surgeries. EEG signals acquired from patients in an aware state or under anesthesia were decomposed into a set of intrinsic mode functions (IMFs) through empirical mode decomposition (EMD). Fast Fourier transform (FFT) and Hilbert transform (HT) analyses were then performed on each IMF to determine the frequency spectra. The probability distributions of expected values of frequencies were generated for the same IMF in the two groups of patients. The corresponding statistical data, including analysis of variance tests, were also calculated. A receiver operating characteristic curve was used to identify optimal frequency value to discriminate between the two states of consciousness. The frequencies of the IMFs for aware patients were found to be higher than those for anesthetized patients. The optimal frequency threshold by using FFT (or HT) for IMF 1 was 21.08 (or 25.00) Hz. IMF1 performed the highest with respect to the area under the curve (AUC) of 0.993 for FFT (or 0.989 for HT); hence it can be applied as a useful classifier to distinguish between fully anesthetized patients and aware patients. This paper proposes a method for identifying whether patients' state of consciousness during a range of surgery types is “under anesthesia” or “aware.” Our method involves using EEG to characterize the depth of anesthesia through two frequency analysis techniques. On the basis of our analyses, we conclude that the performance of IMF1 is satisfactory in distinguishing between patients' states of consciousness during surgery requiring general anesthesia." @default.
- W2520786642 created "2016-09-23" @default.
- W2520786642 creator A5010686910 @default.
- W2520786642 creator A5017741065 @default.
- W2520786642 creator A5032173514 @default.
- W2520786642 creator A5033654745 @default.
- W2520786642 creator A5040835437 @default.
- W2520786642 creator A5045864449 @default.
- W2520786642 creator A5089427275 @default.
- W2520786642 date "2016-12-01" @default.
- W2520786642 modified "2023-10-18" @default.
- W2520786642 title "Comparison of FFT and marginal spectra of EEG using empirical mode decomposition to monitor anesthesia" @default.
- W2520786642 cites W1976505075 @default.
- W2520786642 cites W1991033480 @default.
- W2520786642 cites W2000552763 @default.
- W2520786642 cites W2007221293 @default.
- W2520786642 cites W2017286875 @default.
- W2520786642 cites W2017718631 @default.
- W2520786642 cites W2018683363 @default.
- W2520786642 cites W2020962399 @default.
- W2520786642 cites W2023452964 @default.
- W2520786642 cites W2046826796 @default.
- W2520786642 cites W2059448132 @default.
- W2520786642 cites W2067905316 @default.
- W2520786642 cites W2078332635 @default.
- W2520786642 cites W2081473420 @default.
- W2520786642 cites W2083057403 @default.
- W2520786642 cites W2088202114 @default.
- W2520786642 cites W2090203447 @default.
- W2520786642 cites W2098745184 @default.
- W2520786642 cites W2115469094 @default.
- W2520786642 cites W2117787517 @default.
- W2520786642 cites W2132085292 @default.
- W2520786642 cites W2135639817 @default.
- W2520786642 cites W2141802348 @default.
- W2520786642 cites W2150641541 @default.
- W2520786642 cites W2153230907 @default.
- W2520786642 cites W2154877864 @default.
- W2520786642 cites W2156423497 @default.
- W2520786642 cites W2159741665 @default.
- W2520786642 cites W2164865141 @default.
- W2520786642 cites W2165608127 @default.
- W2520786642 cites W4211048527 @default.
- W2520786642 cites W4299552129 @default.
- W2520786642 cites W4361980669 @default.
- W2520786642 doi "https://doi.org/10.1016/j.cmpb.2016.08.024" @default.
- W2520786642 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28110742" @default.
- W2520786642 hasPublicationYear "2016" @default.
- W2520786642 type Work @default.
- W2520786642 sameAs 2520786642 @default.
- W2520786642 citedByCount "20" @default.
- W2520786642 countsByYear W25207866422018 @default.
- W2520786642 countsByYear W25207866422019 @default.
- W2520786642 countsByYear W25207866422020 @default.
- W2520786642 countsByYear W25207866422021 @default.
- W2520786642 countsByYear W25207866422022 @default.
- W2520786642 countsByYear W25207866422023 @default.
- W2520786642 crossrefType "journal-article" @default.
- W2520786642 hasAuthorship W2520786642A5010686910 @default.
- W2520786642 hasAuthorship W2520786642A5017741065 @default.
- W2520786642 hasAuthorship W2520786642A5032173514 @default.
- W2520786642 hasAuthorship W2520786642A5033654745 @default.
- W2520786642 hasAuthorship W2520786642A5040835437 @default.
- W2520786642 hasAuthorship W2520786642A5045864449 @default.
- W2520786642 hasAuthorship W2520786642A5089427275 @default.
- W2520786642 hasConcept C100660578 @default.
- W2520786642 hasConcept C105795698 @default.
- W2520786642 hasConcept C112633086 @default.
- W2520786642 hasConcept C11413529 @default.
- W2520786642 hasConcept C118552586 @default.
- W2520786642 hasConcept C15744967 @default.
- W2520786642 hasConcept C177264268 @default.
- W2520786642 hasConcept C180747234 @default.
- W2520786642 hasConcept C199360897 @default.
- W2520786642 hasConcept C25570617 @default.
- W2520786642 hasConcept C28490314 @default.
- W2520786642 hasConcept C33923547 @default.
- W2520786642 hasConcept C41008148 @default.
- W2520786642 hasConcept C42219234 @default.
- W2520786642 hasConcept C522805319 @default.
- W2520786642 hasConcept C548259974 @default.
- W2520786642 hasConcept C58471807 @default.
- W2520786642 hasConcept C71924100 @default.
- W2520786642 hasConcept C75172450 @default.
- W2520786642 hasConceptScore W2520786642C100660578 @default.
- W2520786642 hasConceptScore W2520786642C105795698 @default.
- W2520786642 hasConceptScore W2520786642C112633086 @default.
- W2520786642 hasConceptScore W2520786642C11413529 @default.
- W2520786642 hasConceptScore W2520786642C118552586 @default.
- W2520786642 hasConceptScore W2520786642C15744967 @default.
- W2520786642 hasConceptScore W2520786642C177264268 @default.
- W2520786642 hasConceptScore W2520786642C180747234 @default.
- W2520786642 hasConceptScore W2520786642C199360897 @default.
- W2520786642 hasConceptScore W2520786642C25570617 @default.
- W2520786642 hasConceptScore W2520786642C28490314 @default.
- W2520786642 hasConceptScore W2520786642C33923547 @default.
- W2520786642 hasConceptScore W2520786642C41008148 @default.
- W2520786642 hasConceptScore W2520786642C42219234 @default.