Matches in SemOpenAlex for { <https://semopenalex.org/work/W2520789047> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2520789047 abstract "All perfect power P can be written in the form Ak, where A is not a perfect power. We call A the basis of the perfect power P and it is denoted in the form b(P ). In this article we obtain asymptotic formulae for the sum ∑ P≤x b(P ). Mathematics Subject Classification: 11A99, 11B99" @default.
- W2520789047 created "2016-09-23" @default.
- W2520789047 creator A5010425137 @default.
- W2520789047 date "2015-01-01" @default.
- W2520789047 modified "2023-09-27" @default.
- W2520789047 title "Sums of basis in perfect powers asymptotic formulae" @default.
- W2520789047 cites W2076597612 @default.
- W2520789047 cites W2557113523 @default.
- W2520789047 cites W3175367423 @default.
- W2520789047 doi "https://doi.org/10.12988/imf.2015.5327" @default.
- W2520789047 hasPublicationYear "2015" @default.
- W2520789047 type Work @default.
- W2520789047 sameAs 2520789047 @default.
- W2520789047 citedByCount "0" @default.
- W2520789047 crossrefType "journal-article" @default.
- W2520789047 hasAuthorship W2520789047A5010425137 @default.
- W2520789047 hasConcept C103996166 @default.
- W2520789047 hasConcept C114614502 @default.
- W2520789047 hasConcept C121332964 @default.
- W2520789047 hasConcept C12426560 @default.
- W2520789047 hasConcept C163258240 @default.
- W2520789047 hasConcept C24209939 @default.
- W2520789047 hasConcept C2524010 @default.
- W2520789047 hasConcept C2778778035 @default.
- W2520789047 hasConcept C33923547 @default.
- W2520789047 hasConcept C62520636 @default.
- W2520789047 hasConcept C93446932 @default.
- W2520789047 hasConceptScore W2520789047C103996166 @default.
- W2520789047 hasConceptScore W2520789047C114614502 @default.
- W2520789047 hasConceptScore W2520789047C121332964 @default.
- W2520789047 hasConceptScore W2520789047C12426560 @default.
- W2520789047 hasConceptScore W2520789047C163258240 @default.
- W2520789047 hasConceptScore W2520789047C24209939 @default.
- W2520789047 hasConceptScore W2520789047C2524010 @default.
- W2520789047 hasConceptScore W2520789047C2778778035 @default.
- W2520789047 hasConceptScore W2520789047C33923547 @default.
- W2520789047 hasConceptScore W2520789047C62520636 @default.
- W2520789047 hasConceptScore W2520789047C93446932 @default.
- W2520789047 hasLocation W25207890471 @default.
- W2520789047 hasOpenAccess W2520789047 @default.
- W2520789047 hasPrimaryLocation W25207890471 @default.
- W2520789047 hasRelatedWork W141662423 @default.
- W2520789047 hasRelatedWork W1661861408 @default.
- W2520789047 hasRelatedWork W1797430332 @default.
- W2520789047 hasRelatedWork W1894494180 @default.
- W2520789047 hasRelatedWork W1908370292 @default.
- W2520789047 hasRelatedWork W2024190829 @default.
- W2520789047 hasRelatedWork W2029412078 @default.
- W2520789047 hasRelatedWork W2196973525 @default.
- W2520789047 hasRelatedWork W2530133981 @default.
- W2520789047 hasRelatedWork W2949511202 @default.
- W2520789047 hasRelatedWork W2951141024 @default.
- W2520789047 hasRelatedWork W2952171772 @default.
- W2520789047 hasRelatedWork W3010788663 @default.
- W2520789047 hasRelatedWork W3029434668 @default.
- W2520789047 hasRelatedWork W3060999092 @default.
- W2520789047 hasRelatedWork W3103796806 @default.
- W2520789047 hasRelatedWork W3124700250 @default.
- W2520789047 hasRelatedWork W3196347105 @default.
- W2520789047 hasRelatedWork W97333735 @default.
- W2520789047 hasRelatedWork W1763271498 @default.
- W2520789047 isParatext "false" @default.
- W2520789047 isRetracted "false" @default.
- W2520789047 magId "2520789047" @default.
- W2520789047 workType "article" @default.