Matches in SemOpenAlex for { <https://semopenalex.org/work/W2520928448> ?p ?o ?g. }
- W2520928448 endingPage "880" @default.
- W2520928448 startingPage "869" @default.
- W2520928448 abstract "Abstract. The eddy covariance method is commonly used to calculate vertical turbulent exchange fluxes between ecosystems and the atmosphere. Besides other assumptions, it requires steady-state flow conditions. If this requirement is not fulfilled over the averaging interval of, for example, 30 min, the fluxes might be miscalculated. Here two further calculation methods, conditional sampling and wavelet analysis, which do not need the steady-state assumption, were implemented and compared to eddy covariance. All fluxes were calculated for 30 min averaging periods, while the wavelet method – using both the Mexican hat and the Morlet wavelet – additionally allowed us to obtain a 1 min averaged flux. The results of all three methods were compared against each other for times with best steady-state conditions and well-developed turbulence. An excellent agreement of the wavelet results to the eddy covariance reference was found, where the deviations to eddy covariance were of the order of < 2 % for Morlet as well as < 7 % for Mexican hat and thus within the typical error range of eddy covariance measurements. The conditional sampling flux also showed a very good agreement to the eddy covariance reference, but the occurrence of outliers and the necessary condition of a zero mean vertical wind velocity reduced its general reliability. Using the Mexican hat wavelet flux in a case study, it was possible to locate a nightly short time turbulent event exactly in time, while the Morlet wavelet gave a trustworthy flux over a longer period, e.g. 30 min, under consideration of this short-time event. At a glance, the Mexican hat wavelet flux offers the possibility of a detailed analysis of non-stationary times, where the classical eddy covariance method fails. Additionally, the Morlet wavelet should be used to provide a trustworthy flux in those 30 min periods where the eddy covariance method provides low-quality data due to instationarities." @default.
- W2520928448 created "2016-09-23" @default.
- W2520928448 creator A5011065411 @default.
- W2520928448 creator A5032154294 @default.
- W2520928448 creator A5047841906 @default.
- W2520928448 date "2017-03-09" @default.
- W2520928448 modified "2023-10-17" @default.
- W2520928448 title "Flux calculation of short turbulent events – comparison of three methods" @default.
- W2520928448 cites W156080455 @default.
- W2520928448 cites W1667277804 @default.
- W2520928448 cites W178013356 @default.
- W2520928448 cites W193164340 @default.
- W2520928448 cites W1977442942 @default.
- W2520928448 cites W1984391806 @default.
- W2520928448 cites W1985984113 @default.
- W2520928448 cites W1996379139 @default.
- W2520928448 cites W2007347766 @default.
- W2520928448 cites W2012873135 @default.
- W2520928448 cites W2034754197 @default.
- W2520928448 cites W2037120346 @default.
- W2520928448 cites W2048171775 @default.
- W2520928448 cites W2050728582 @default.
- W2520928448 cites W2063615912 @default.
- W2520928448 cites W2065889327 @default.
- W2520928448 cites W2078355631 @default.
- W2520928448 cites W2079916764 @default.
- W2520928448 cites W2096972703 @default.
- W2520928448 cites W2107929944 @default.
- W2520928448 cites W2108550173 @default.
- W2520928448 cites W2123417491 @default.
- W2520928448 cites W2127564270 @default.
- W2520928448 cites W2128342866 @default.
- W2520928448 cites W2129575439 @default.
- W2520928448 cites W2135877839 @default.
- W2520928448 cites W2146421864 @default.
- W2520928448 cites W2150489660 @default.
- W2520928448 cites W2151277668 @default.
- W2520928448 cites W2152078335 @default.
- W2520928448 cites W2160079434 @default.
- W2520928448 cites W2165278724 @default.
- W2520928448 cites W2167909491 @default.
- W2520928448 cites W2978954487 @default.
- W2520928448 cites W4231932369 @default.
- W2520928448 cites W4237123086 @default.
- W2520928448 cites W48192988 @default.
- W2520928448 doi "https://doi.org/10.5194/amt-10-869-2017" @default.
- W2520928448 hasPublicationYear "2017" @default.
- W2520928448 type Work @default.
- W2520928448 sameAs 2520928448 @default.
- W2520928448 citedByCount "26" @default.
- W2520928448 countsByYear W25209284482018 @default.
- W2520928448 countsByYear W25209284482019 @default.
- W2520928448 countsByYear W25209284482020 @default.
- W2520928448 countsByYear W25209284482021 @default.
- W2520928448 countsByYear W25209284482022 @default.
- W2520928448 countsByYear W25209284482023 @default.
- W2520928448 crossrefType "journal-article" @default.
- W2520928448 hasAuthorship W2520928448A5011065411 @default.
- W2520928448 hasAuthorship W2520928448A5032154294 @default.
- W2520928448 hasAuthorship W2520928448A5047841906 @default.
- W2520928448 hasBestOaLocation W25209284481 @default.
- W2520928448 hasConcept C105795698 @default.
- W2520928448 hasConcept C110872660 @default.
- W2520928448 hasConcept C121332964 @default.
- W2520928448 hasConcept C153294291 @default.
- W2520928448 hasConcept C154945302 @default.
- W2520928448 hasConcept C178650346 @default.
- W2520928448 hasConcept C178790620 @default.
- W2520928448 hasConcept C185592680 @default.
- W2520928448 hasConcept C18903297 @default.
- W2520928448 hasConcept C196216189 @default.
- W2520928448 hasConcept C196558001 @default.
- W2520928448 hasConcept C2778280487 @default.
- W2520928448 hasConcept C33923547 @default.
- W2520928448 hasConcept C35187779 @default.
- W2520928448 hasConcept C41008148 @default.
- W2520928448 hasConcept C46286280 @default.
- W2520928448 hasConcept C47432892 @default.
- W2520928448 hasConcept C68709404 @default.
- W2520928448 hasConcept C86803240 @default.
- W2520928448 hasConceptScore W2520928448C105795698 @default.
- W2520928448 hasConceptScore W2520928448C110872660 @default.
- W2520928448 hasConceptScore W2520928448C121332964 @default.
- W2520928448 hasConceptScore W2520928448C153294291 @default.
- W2520928448 hasConceptScore W2520928448C154945302 @default.
- W2520928448 hasConceptScore W2520928448C178650346 @default.
- W2520928448 hasConceptScore W2520928448C178790620 @default.
- W2520928448 hasConceptScore W2520928448C185592680 @default.
- W2520928448 hasConceptScore W2520928448C18903297 @default.
- W2520928448 hasConceptScore W2520928448C196216189 @default.
- W2520928448 hasConceptScore W2520928448C196558001 @default.
- W2520928448 hasConceptScore W2520928448C2778280487 @default.
- W2520928448 hasConceptScore W2520928448C33923547 @default.
- W2520928448 hasConceptScore W2520928448C35187779 @default.
- W2520928448 hasConceptScore W2520928448C41008148 @default.
- W2520928448 hasConceptScore W2520928448C46286280 @default.
- W2520928448 hasConceptScore W2520928448C47432892 @default.
- W2520928448 hasConceptScore W2520928448C68709404 @default.