Matches in SemOpenAlex for { <https://semopenalex.org/work/W2520941569> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2520941569 abstract "This research addresses the problem of populating Building Information Model databases with information on building construction materials using a new classification method which uses multi-spectral laser scanning intensity and geometry data. Research in multi-spectral laser scanning will open up a new era in survey and mapping; the 3D surface spectral response sensitive to the transmitted wavelengths could be derived day or night in complex environments using a single sensor. At the start of this research a commercial multi-spectral sensor did not exist, but a few prototype level instruments had been developed; this work wished to get ahead of the hardware development and assess capability and develop applications from multi-spectral laser scanning. These applications could include high density topographic surveying, seamless shallow water bathymetry, environmental modelling, urban surface mapping, or vegetative classification. This was achieved by using from multiple terrestrial laser scanners, each with a different laser wavelength. The fused data provided a spectral and geometric signature of each material which was subsequently classified using a supervised neural network. The multi-spectral data was created by precise co-positioning of the scanner optical centres and sub-centimetre registration using common sphere targets. A common point cloud, with reflected laser intensity values for each laser wavelength, was created from the data. The three intensity values for each point were then used as input to the classifier; ratios of the actual intensities were used to reduce the effect of range and incidence angle differences. Analysis of five classes of data showed that they were not linearly separable; an artificial neural network classifier was the chosen classifier has been shown to separate this type of data. The classifier training dataset was manually created from a small section of the original scan; five classes of building materials were selected for training. The performance of the classification was tested against a reference point cloud of the complete scene. The classifier was able to distinguish the chosen test classes with a mean rate of 84.9% and maximum for individual classes of 100%. The classes with the highest classification rate were brick, gravel and pavement. The success rate was found to be affected by several factors, among these the most significant, inter-scan registration, limitation on available wavelengths and the number of classes of material chosen. Additionally, a method which included a measure of texture through variations in intensity was tested successfully. This research presents a new method of classifying materials using multi-spectral laser scanning, a novel method for registering dissimilar point clouds from different scanners and an insight into the part played by laser speckle interpretation of reflected intensity." @default.
- W2520941569 created "2016-09-23" @default.
- W2520941569 creator A5084093367 @default.
- W2520941569 date "2016-07-15" @default.
- W2520941569 modified "2023-09-27" @default.
- W2520941569 title "Construction material classification using multi-spectral terrestrial laser scanning" @default.
- W2520941569 hasPublicationYear "2016" @default.
- W2520941569 type Work @default.
- W2520941569 sameAs 2520941569 @default.
- W2520941569 citedByCount "0" @default.
- W2520941569 crossrefType "dissertation" @default.
- W2520941569 hasAuthorship W2520941569A5084093367 @default.
- W2520941569 hasConcept C120665830 @default.
- W2520941569 hasConcept C121332964 @default.
- W2520941569 hasConcept C131979681 @default.
- W2520941569 hasConcept C141349535 @default.
- W2520941569 hasConcept C154945302 @default.
- W2520941569 hasConcept C159078339 @default.
- W2520941569 hasConcept C176641082 @default.
- W2520941569 hasConcept C205649164 @default.
- W2520941569 hasConcept C2779751349 @default.
- W2520941569 hasConcept C31972630 @default.
- W2520941569 hasConcept C41008148 @default.
- W2520941569 hasConcept C51399673 @default.
- W2520941569 hasConcept C520434653 @default.
- W2520941569 hasConcept C6260449 @default.
- W2520941569 hasConcept C62649853 @default.
- W2520941569 hasConceptScore W2520941569C120665830 @default.
- W2520941569 hasConceptScore W2520941569C121332964 @default.
- W2520941569 hasConceptScore W2520941569C131979681 @default.
- W2520941569 hasConceptScore W2520941569C141349535 @default.
- W2520941569 hasConceptScore W2520941569C154945302 @default.
- W2520941569 hasConceptScore W2520941569C159078339 @default.
- W2520941569 hasConceptScore W2520941569C176641082 @default.
- W2520941569 hasConceptScore W2520941569C205649164 @default.
- W2520941569 hasConceptScore W2520941569C2779751349 @default.
- W2520941569 hasConceptScore W2520941569C31972630 @default.
- W2520941569 hasConceptScore W2520941569C41008148 @default.
- W2520941569 hasConceptScore W2520941569C51399673 @default.
- W2520941569 hasConceptScore W2520941569C520434653 @default.
- W2520941569 hasConceptScore W2520941569C6260449 @default.
- W2520941569 hasConceptScore W2520941569C62649853 @default.
- W2520941569 hasLocation W25209415691 @default.
- W2520941569 hasOpenAccess W2520941569 @default.
- W2520941569 hasPrimaryLocation W25209415691 @default.
- W2520941569 hasRelatedWork W1701217527 @default.
- W2520941569 hasRelatedWork W1966438710 @default.
- W2520941569 hasRelatedWork W2037050983 @default.
- W2520941569 hasRelatedWork W2056769281 @default.
- W2520941569 hasRelatedWork W2073869244 @default.
- W2520941569 hasRelatedWork W2085790998 @default.
- W2520941569 hasRelatedWork W2167314816 @default.
- W2520941569 hasRelatedWork W2282208032 @default.
- W2520941569 hasRelatedWork W2345154154 @default.
- W2520941569 hasRelatedWork W2953297071 @default.
- W2520941569 hasRelatedWork W2980786572 @default.
- W2520941569 hasRelatedWork W3047197800 @default.
- W2520941569 hasRelatedWork W3175014773 @default.
- W2520941569 hasRelatedWork W774368732 @default.
- W2520941569 hasRelatedWork W1500795983 @default.
- W2520941569 hasRelatedWork W2060755742 @default.
- W2520941569 hasRelatedWork W2091973572 @default.
- W2520941569 hasRelatedWork W2188955795 @default.
- W2520941569 hasRelatedWork W2839713042 @default.
- W2520941569 hasRelatedWork W2922563992 @default.
- W2520941569 isParatext "false" @default.
- W2520941569 isRetracted "false" @default.
- W2520941569 magId "2520941569" @default.
- W2520941569 workType "dissertation" @default.