Matches in SemOpenAlex for { <https://semopenalex.org/work/W2521219762> ?p ?o ?g. }
- W2521219762 abstract "Protein conformational changes are known to play important roles in assorted biochemical and biological processes. Driven by thermal motions of surrounding solvent molecules, such a structural remodeling often occurs stochastically. Yet, regardless of how random the conformational reconfiguration may appear, it could in principle be described by a linear combination of a set of orthogonal modes which, in turn, are contained in the intramolecular distance distributions. The central challenge is how to obtain the distribution. This contribution proposes a Bayesian data-augmentation scheme to extract the predominant modes from only few distance distributions, be they from computational sampling or directly from experiments such as single-molecule Förster-type resonance energy transfer (smFRET). The inference of the complete protein structure from insufficient data was recognized as isomorphic to the missing-data problem in Bayesian statistical learning. Using smFRET data as an example, the missing coordinates were deduced, given protein structural constraints and multiple but limited number of smFRET distances; the Boltzmann weighing of each inferred protein structure was then evaluated using computational modeling to numerically construct the posterior density for the global protein conformation. The conformational modes were then determined from the iteratively converged overall conformational distribution using principal component analysis. Two examples were presented to illustrate these basic ideas as well as their practical implementation. The scheme described herein was based on the theory behind the powerful Tanner-Wang algorithm that guarantees convergence to the true posterior density. However, instead of assuming a mathematical model to calculate the likelihood as in conventional statistical inference, here the protein structure was treated as a statistical parameter and was imputed from the numerical likelihood function based on structural information, a probability model-free method. The framework put forth here is anticipated to be generally applicable, offering a new way to articulate protein conformational changes in a quantifiable manner." @default.
- W2521219762 created "2016-09-30" @default.
- W2521219762 creator A5033969727 @default.
- W2521219762 creator A5064550459 @default.
- W2521219762 creator A5069415638 @default.
- W2521219762 date "2016-09-29" @default.
- W2521219762 modified "2023-09-26" @default.
- W2521219762 title "Extraction of Protein Conformational Modes from Distance Distributions Using Structurally Imputed Bayesian Data Augmentation" @default.
- W2521219762 cites W1524412093 @default.
- W2521219762 cites W1574274444 @default.
- W2521219762 cites W1640454628 @default.
- W2521219762 cites W1969190920 @default.
- W2521219762 cites W1969365948 @default.
- W2521219762 cites W1973699439 @default.
- W2521219762 cites W1974205407 @default.
- W2521219762 cites W1975105397 @default.
- W2521219762 cites W1978958559 @default.
- W2521219762 cites W1992722697 @default.
- W2521219762 cites W1997310186 @default.
- W2521219762 cites W2000439855 @default.
- W2521219762 cites W2007556342 @default.
- W2521219762 cites W2008714553 @default.
- W2521219762 cites W2009765206 @default.
- W2521219762 cites W2011940688 @default.
- W2521219762 cites W2013643300 @default.
- W2521219762 cites W2020413876 @default.
- W2521219762 cites W2025183033 @default.
- W2521219762 cites W2030911724 @default.
- W2521219762 cites W2036108598 @default.
- W2521219762 cites W2037760012 @default.
- W2521219762 cites W2043736118 @default.
- W2521219762 cites W2044098317 @default.
- W2521219762 cites W2045656688 @default.
- W2521219762 cites W2046033989 @default.
- W2521219762 cites W2046976976 @default.
- W2521219762 cites W2047580257 @default.
- W2521219762 cites W2055708290 @default.
- W2521219762 cites W2057487175 @default.
- W2521219762 cites W2060992159 @default.
- W2521219762 cites W2063107779 @default.
- W2521219762 cites W2064390126 @default.
- W2521219762 cites W2066245794 @default.
- W2521219762 cites W2069777230 @default.
- W2521219762 cites W2071317718 @default.
- W2521219762 cites W2084979707 @default.
- W2521219762 cites W2085809095 @default.
- W2521219762 cites W2088906583 @default.
- W2521219762 cites W2090425500 @default.
- W2521219762 cites W2093151204 @default.
- W2521219762 cites W2094624283 @default.
- W2521219762 cites W2094795801 @default.
- W2521219762 cites W2098787719 @default.
- W2521219762 cites W2101017457 @default.
- W2521219762 cites W2102145519 @default.
- W2521219762 cites W2103420861 @default.
- W2521219762 cites W2105571876 @default.
- W2521219762 cites W2113994268 @default.
- W2521219762 cites W2114320376 @default.
- W2521219762 cites W2116512025 @default.
- W2521219762 cites W2121939621 @default.
- W2521219762 cites W2132262459 @default.
- W2521219762 cites W2132589721 @default.
- W2521219762 cites W2140095548 @default.
- W2521219762 cites W2140328121 @default.
- W2521219762 cites W2142595184 @default.
- W2521219762 cites W2152977846 @default.
- W2521219762 cites W2154261378 @default.
- W2521219762 cites W2160451368 @default.
- W2521219762 cites W2317301136 @default.
- W2521219762 cites W3101288694 @default.
- W2521219762 doi "https://doi.org/10.1021/acs.jpcb.6b07767" @default.
- W2521219762 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27642672" @default.
- W2521219762 hasPublicationYear "2016" @default.
- W2521219762 type Work @default.
- W2521219762 sameAs 2521219762 @default.
- W2521219762 citedByCount "4" @default.
- W2521219762 countsByYear W25212197622017 @default.
- W2521219762 countsByYear W25212197622018 @default.
- W2521219762 countsByYear W25212197622021 @default.
- W2521219762 crossrefType "journal-article" @default.
- W2521219762 hasAuthorship W2521219762A5033969727 @default.
- W2521219762 hasAuthorship W2521219762A5064550459 @default.
- W2521219762 hasAuthorship W2521219762A5069415638 @default.
- W2521219762 hasConcept C107673813 @default.
- W2521219762 hasConcept C11413529 @default.
- W2521219762 hasConcept C119857082 @default.
- W2521219762 hasConcept C121332964 @default.
- W2521219762 hasConcept C121864883 @default.
- W2521219762 hasConcept C154945302 @default.
- W2521219762 hasConcept C160234255 @default.
- W2521219762 hasConcept C185592680 @default.
- W2521219762 hasConcept C186060115 @default.
- W2521219762 hasConcept C2781455991 @default.
- W2521219762 hasConcept C41008148 @default.
- W2521219762 hasConcept C58489278 @default.
- W2521219762 hasConcept C62520636 @default.
- W2521219762 hasConcept C71240020 @default.
- W2521219762 hasConcept C75079739 @default.
- W2521219762 hasConcept C86803240 @default.
- W2521219762 hasConcept C91881484 @default.