Matches in SemOpenAlex for { <https://semopenalex.org/work/W2522485613> ?p ?o ?g. }
- W2522485613 endingPage "771" @default.
- W2522485613 startingPage "771" @default.
- W2522485613 abstract "Airborne single-photon lidar (SPL) is a new technology that holds considerable potential for forest structure and carbon monitoring at large spatial scales because it acquires 3D measurements of vegetation faster and more efficiently than conventional lidar instruments. However, SPL instruments use green wavelength (532 nm) lasers, which are sensitive to background solar noise, and therefore SPL point clouds require more elaborate noise filtering than other lidar instruments to determine canopy heights, particularly in daytime acquisitions. Histogram-based aggregation is a commonly used approach for removing noise from photon counting lidar data, but it reduces the resolution of the dataset. Here we present an alternate voxel-based spatial filtering method that filters noise points efficiently while largely preserving the spatial integrity of SPL data. We develop and test our algorithms on an experimental SPL dataset acquired over Garrett County in Maryland, USA. We then compare canopy attributes retrieved using our new algorithm with those obtained from the conventional histogram binning approach. Our results show that canopy heights derived using the new algorithm have a strong agreement with field-measured heights (r2 = 0.69, bias = 0.42 m, RMSE = 4.85 m) and discrete return lidar heights (r2 = 0.94, bias = 1.07 m, RMSE = 2.42 m). Results are consistently better than height accuracies from the histogram method (field data: r2 = 0.59, bias = 0.00 m, RMSE = 6.25 m; DRL: r2 = 0.78, bias = −0.06 m and RMSE = 4.88 m). Furthermore, we find that the spatial-filtering method retains fine-scale canopy structure detail and has lower errors over steep slopes. We therefore believe that automated spatial filtering algorithms such as the one presented here can support large-scale, canopy structure mapping from airborne SPL data." @default.
- W2522485613 created "2016-09-30" @default.
- W2522485613 creator A5037921642 @default.
- W2522485613 creator A5038232337 @default.
- W2522485613 creator A5051617720 @default.
- W2522485613 creator A5077118042 @default.
- W2522485613 creator A5078746720 @default.
- W2522485613 date "2016-09-19" @default.
- W2522485613 modified "2023-10-18" @default.
- W2522485613 title "Voxel-Based Spatial Filtering Method for Canopy Height Retrieval from Airborne Single-Photon Lidar" @default.
- W2522485613 cites W1769790805 @default.
- W2522485613 cites W1964552621 @default.
- W2522485613 cites W1965228281 @default.
- W2522485613 cites W1968558695 @default.
- W2522485613 cites W1985206079 @default.
- W2522485613 cites W1987610258 @default.
- W2522485613 cites W2005827599 @default.
- W2522485613 cites W2008271179 @default.
- W2522485613 cites W2018140562 @default.
- W2522485613 cites W2020457848 @default.
- W2522485613 cites W2027319497 @default.
- W2522485613 cites W2031319220 @default.
- W2522485613 cites W2036640117 @default.
- W2522485613 cites W2039998113 @default.
- W2522485613 cites W2045505889 @default.
- W2522485613 cites W2076712994 @default.
- W2522485613 cites W2081558173 @default.
- W2522485613 cites W2085452818 @default.
- W2522485613 cites W2089648522 @default.
- W2522485613 cites W2098490823 @default.
- W2522485613 cites W2111460811 @default.
- W2522485613 cites W2120856528 @default.
- W2522485613 cites W2127237921 @default.
- W2522485613 cites W2128565996 @default.
- W2522485613 cites W2137933418 @default.
- W2522485613 cites W2164205469 @default.
- W2522485613 cites W2292481897 @default.
- W2522485613 cites W2471343708 @default.
- W2522485613 cites W4243993943 @default.
- W2522485613 cites W4244720967 @default.
- W2522485613 cites W809979079 @default.
- W2522485613 doi "https://doi.org/10.3390/rs8090771" @default.
- W2522485613 hasPublicationYear "2016" @default.
- W2522485613 type Work @default.
- W2522485613 sameAs 2522485613 @default.
- W2522485613 citedByCount "30" @default.
- W2522485613 countsByYear W25224856132017 @default.
- W2522485613 countsByYear W25224856132018 @default.
- W2522485613 countsByYear W25224856132019 @default.
- W2522485613 countsByYear W25224856132020 @default.
- W2522485613 countsByYear W25224856132021 @default.
- W2522485613 countsByYear W25224856132022 @default.
- W2522485613 countsByYear W25224856132023 @default.
- W2522485613 crossrefType "journal-article" @default.
- W2522485613 hasAuthorship W2522485613A5037921642 @default.
- W2522485613 hasAuthorship W2522485613A5038232337 @default.
- W2522485613 hasAuthorship W2522485613A5051617720 @default.
- W2522485613 hasAuthorship W2522485613A5077118042 @default.
- W2522485613 hasAuthorship W2522485613A5078746720 @default.
- W2522485613 hasBestOaLocation W25224856131 @default.
- W2522485613 hasConcept C101000010 @default.
- W2522485613 hasConcept C105795698 @default.
- W2522485613 hasConcept C115961682 @default.
- W2522485613 hasConcept C131979681 @default.
- W2522485613 hasConcept C139945424 @default.
- W2522485613 hasConcept C154945302 @default.
- W2522485613 hasConcept C166957645 @default.
- W2522485613 hasConcept C205649164 @default.
- W2522485613 hasConcept C33923547 @default.
- W2522485613 hasConcept C39432304 @default.
- W2522485613 hasConcept C41008148 @default.
- W2522485613 hasConcept C51399673 @default.
- W2522485613 hasConcept C53533937 @default.
- W2522485613 hasConcept C62649853 @default.
- W2522485613 hasConcept C99498987 @default.
- W2522485613 hasConceptScore W2522485613C101000010 @default.
- W2522485613 hasConceptScore W2522485613C105795698 @default.
- W2522485613 hasConceptScore W2522485613C115961682 @default.
- W2522485613 hasConceptScore W2522485613C131979681 @default.
- W2522485613 hasConceptScore W2522485613C139945424 @default.
- W2522485613 hasConceptScore W2522485613C154945302 @default.
- W2522485613 hasConceptScore W2522485613C166957645 @default.
- W2522485613 hasConceptScore W2522485613C205649164 @default.
- W2522485613 hasConceptScore W2522485613C33923547 @default.
- W2522485613 hasConceptScore W2522485613C39432304 @default.
- W2522485613 hasConceptScore W2522485613C41008148 @default.
- W2522485613 hasConceptScore W2522485613C51399673 @default.
- W2522485613 hasConceptScore W2522485613C53533937 @default.
- W2522485613 hasConceptScore W2522485613C62649853 @default.
- W2522485613 hasConceptScore W2522485613C99498987 @default.
- W2522485613 hasFunder F4320306101 @default.
- W2522485613 hasIssue "9" @default.
- W2522485613 hasLocation W25224856131 @default.
- W2522485613 hasLocation W25224856132 @default.
- W2522485613 hasOpenAccess W2522485613 @default.
- W2522485613 hasPrimaryLocation W25224856131 @default.
- W2522485613 hasRelatedWork W1557295345 @default.
- W2522485613 hasRelatedWork W2001618165 @default.