Matches in SemOpenAlex for { <https://semopenalex.org/work/W2522842610> ?p ?o ?g. }
- W2522842610 abstract "We consider the estimation and inference of graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. A critical challenge in the estimation and inference of this model is the fact that its penalized maximum likelihood estimation involves minimizing a non-convex objective function. To address it, this paper makes two contributions: (i) In spite of the non-convexity of this estimation problem, we prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with an optimal statistical rate of convergence. (ii) We propose a de-biased statistical inference procedure for testing hypotheses on the true support of the sparse precision matrices, and employ it for testing a growing number of hypothesis with false discovery rate (FDR) control. The asymptotic normality of our test statistic and the consistency of FDR control procedure are established. Our theoretical results are backed up by thorough numerical studies and our real applications on neuroimaging studies of Autism spectrum disorder and users' advertising click analysis bring new scientific findings and business insights. The proposed methods are encoded into a publicly available R package Tlasso." @default.
- W2522842610 created "2016-09-30" @default.
- W2522842610 creator A5019708503 @default.
- W2522842610 creator A5030589675 @default.
- W2522842610 creator A5042490620 @default.
- W2522842610 creator A5060973953 @default.
- W2522842610 creator A5078210646 @default.
- W2522842610 creator A5081813105 @default.
- W2522842610 date "2016-09-15" @default.
- W2522842610 modified "2023-09-28" @default.
- W2522842610 title "Tensor Graphical Model: Non-convex Optimization and Statistical Inference" @default.
- W2522842610 cites W1500188831 @default.
- W2522842610 cites W1546851689 @default.
- W2522842610 cites W1595670179 @default.
- W2522842610 cites W1712752320 @default.
- W2522842610 cites W1862068047 @default.
- W2522842610 cites W1949500095 @default.
- W2522842610 cites W1958662094 @default.
- W2522842610 cites W1969752902 @default.
- W2522842610 cites W1980067858 @default.
- W2522842610 cites W1981638497 @default.
- W2522842610 cites W1982197374 @default.
- W2522842610 cites W1990551862 @default.
- W2522842610 cites W2001334414 @default.
- W2522842610 cites W2020925091 @default.
- W2522842610 cites W2024165284 @default.
- W2522842610 cites W2032108387 @default.
- W2522842610 cites W2035182720 @default.
- W2522842610 cites W2039448553 @default.
- W2522842610 cites W2039954784 @default.
- W2522842610 cites W2049459260 @default.
- W2522842610 cites W2058046532 @default.
- W2522842610 cites W2068943743 @default.
- W2522842610 cites W2069049877 @default.
- W2522842610 cites W2069119359 @default.
- W2522842610 cites W2074682976 @default.
- W2522842610 cites W2076525882 @default.
- W2522842610 cites W2081746825 @default.
- W2522842610 cites W2086400086 @default.
- W2522842610 cites W2089349245 @default.
- W2522842610 cites W2091449379 @default.
- W2522842610 cites W2096602764 @default.
- W2522842610 cites W2097581234 @default.
- W2522842610 cites W2102937240 @default.
- W2522842610 cites W2105459687 @default.
- W2522842610 cites W2105724942 @default.
- W2522842610 cites W2106005123 @default.
- W2522842610 cites W2107122056 @default.
- W2522842610 cites W2109999391 @default.
- W2522842610 cites W2110451175 @default.
- W2522842610 cites W2112292531 @default.
- W2522842610 cites W2119385818 @default.
- W2522842610 cites W2125156589 @default.
- W2522842610 cites W2130800351 @default.
- W2522842610 cites W2131668296 @default.
- W2522842610 cites W2132555912 @default.
- W2522842610 cites W2135046866 @default.
- W2522842610 cites W2135311088 @default.
- W2522842610 cites W2147512299 @default.
- W2522842610 cites W2150940164 @default.
- W2522842610 cites W2151128232 @default.
- W2522842610 cites W2152046843 @default.
- W2522842610 cites W2158746276 @default.
- W2522842610 cites W2161758457 @default.
- W2522842610 cites W2164276105 @default.
- W2522842610 cites W2210537348 @default.
- W2522842610 cites W2242288806 @default.
- W2522842610 cites W2289138118 @default.
- W2522842610 cites W2346798022 @default.
- W2522842610 cites W2406138340 @default.
- W2522842610 cites W2524550498 @default.
- W2522842610 cites W2586353914 @default.
- W2522842610 cites W2622480976 @default.
- W2522842610 cites W2748575889 @default.
- W2522842610 cites W2949960673 @default.
- W2522842610 cites W2963682607 @default.
- W2522842610 cites W2963923362 @default.
- W2522842610 cites W2963972677 @default.
- W2522842610 cites W2964331163 @default.
- W2522842610 cites W2964346891 @default.
- W2522842610 cites W301343586 @default.
- W2522842610 cites W3098985301 @default.
- W2522842610 cites W3099550161 @default.
- W2522842610 cites W3099609308 @default.
- W2522842610 cites W3103042558 @default.
- W2522842610 cites W3148198191 @default.
- W2522842610 cites W813605148 @default.
- W2522842610 doi "https://doi.org/10.48550/arxiv.1609.04522" @default.
- W2522842610 hasPublicationYear "2016" @default.
- W2522842610 type Work @default.
- W2522842610 sameAs 2522842610 @default.
- W2522842610 citedByCount "0" @default.
- W2522842610 crossrefType "posted-content" @default.
- W2522842610 hasAuthorship W2522842610A5019708503 @default.
- W2522842610 hasAuthorship W2522842610A5030589675 @default.
- W2522842610 hasAuthorship W2522842610A5042490620 @default.
- W2522842610 hasAuthorship W2522842610A5060973953 @default.
- W2522842610 hasAuthorship W2522842610A5078210646 @default.
- W2522842610 hasAuthorship W2522842610A5081813105 @default.
- W2522842610 hasBestOaLocation W25228426101 @default.