Matches in SemOpenAlex for { <https://semopenalex.org/work/W2523265165> ?p ?o ?g. }
- W2523265165 endingPage "105" @default.
- W2523265165 startingPage "92" @default.
- W2523265165 abstract "Object-based image analysis methods have been developed recently. They have since become a very active research topic in the remote sensing community. This is mainly because the researchers have begun to study the spatial structures within the data. In contrast, pixel-based methods only use the spectral content of data. To evaluate the applicability of object-based image analysis methods for land-cover information extraction from hyperspectral data, a comprehensive comparative analysis was performed. In this study, six supervised classification methods were selected from pixel-based category, including the maximum likelihood (ML), fisher linear likelihood (FLL), support vector machine (SVM), binary encoding (BE), spectral angle mapper (SAM) and spectral information divergence (SID). The classifiers were conducted on several features extracted from original spectral bands in order to avoid the problem of the Hughes phenomenon, and obtain a sufficient number of training samples. Three supervised and four unsupervised feature extraction methods were used. Pixel based classification was conducted in the first step of the proposed algorithm. The effective feature number (EFN) was then obtained. Image objects were thereafter created using the fractal net evolution approach (FNEA), the segmentation method implemented in eCognition software. Several experiments have been carried out to find the best segmentation parameters. The classification accuracy of these objects was compared with the accuracy of the pixel-based methods. In these experiments, the Pavia University Campus hyperspectral dataset was used. This dataset was collected by the ROSIS sensor over an urban area in Italy. The results reveal that when using any combination of feature extraction and classification methods, the performance of object-based methods was better than pixel-based ones. Furthermore the statistical analysis of results shows that on average, there is almost an 8 percent improvement in classification accuracy when we use the object-based methods." @default.
- W2523265165 created "2016-09-30" @default.
- W2523265165 creator A5023819067 @default.
- W2523265165 creator A5038954634 @default.
- W2523265165 creator A5058741879 @default.
- W2523265165 creator A5063724972 @default.
- W2523265165 creator A5078051550 @default.
- W2523265165 date "2016-09-22" @default.
- W2523265165 modified "2023-09-29" @default.
- W2523265165 title "USING PIXEL-BASED AND OBJECT-BASED METHODS TO CLASSIFY URBAN HYPERSPECTRAL FEATURES" @default.
- W2523265165 cites W132746359 @default.
- W2523265165 cites W1485139568 @default.
- W2523265165 cites W1979524861 @default.
- W2523265165 cites W1984792953 @default.
- W2523265165 cites W1987188483 @default.
- W2523265165 cites W2003300916 @default.
- W2523265165 cites W2008043556 @default.
- W2523265165 cites W2010319424 @default.
- W2523265165 cites W2047236787 @default.
- W2523265165 cites W2061240006 @default.
- W2523265165 cites W2064289726 @default.
- W2523265165 cites W2065910804 @default.
- W2523265165 cites W2094304765 @default.
- W2523265165 cites W2097924260 @default.
- W2523265165 cites W2098057602 @default.
- W2523265165 cites W2099577969 @default.
- W2523265165 cites W2101051003 @default.
- W2523265165 cites W2103192805 @default.
- W2523265165 cites W2104391405 @default.
- W2523265165 cites W2106677999 @default.
- W2523265165 cites W2107966405 @default.
- W2523265165 cites W2114819256 @default.
- W2523265165 cites W2115451191 @default.
- W2523265165 cites W2118796925 @default.
- W2523265165 cites W2119879130 @default.
- W2523265165 cites W2123649031 @default.
- W2523265165 cites W2124571274 @default.
- W2523265165 cites W2127495569 @default.
- W2523265165 cites W2129931535 @default.
- W2523265165 cites W2136251662 @default.
- W2523265165 cites W2136625467 @default.
- W2523265165 cites W2138973222 @default.
- W2523265165 cites W2148842444 @default.
- W2523265165 cites W2153633422 @default.
- W2523265165 cites W2160633256 @default.
- W2523265165 cites W2164330327 @default.
- W2523265165 cites W2164437025 @default.
- W2523265165 cites W2165820582 @default.
- W2523265165 cites W2171992352 @default.
- W2523265165 cites W2221166316 @default.
- W2523265165 cites W4214564766 @default.
- W2523265165 doi "https://doi.org/10.3846/20296991.2016.1226388" @default.
- W2523265165 hasPublicationYear "2016" @default.
- W2523265165 type Work @default.
- W2523265165 sameAs 2523265165 @default.
- W2523265165 citedByCount "3" @default.
- W2523265165 countsByYear W25232651652018 @default.
- W2523265165 countsByYear W25232651652021 @default.
- W2523265165 countsByYear W25232651652022 @default.
- W2523265165 crossrefType "journal-article" @default.
- W2523265165 hasAuthorship W2523265165A5023819067 @default.
- W2523265165 hasAuthorship W2523265165A5038954634 @default.
- W2523265165 hasAuthorship W2523265165A5058741879 @default.
- W2523265165 hasAuthorship W2523265165A5063724972 @default.
- W2523265165 hasAuthorship W2523265165A5078051550 @default.
- W2523265165 hasBestOaLocation W25232651651 @default.
- W2523265165 hasConcept C12267149 @default.
- W2523265165 hasConcept C138885662 @default.
- W2523265165 hasConcept C153180895 @default.
- W2523265165 hasConcept C154945302 @default.
- W2523265165 hasConcept C159078339 @default.
- W2523265165 hasConcept C160633673 @default.
- W2523265165 hasConcept C2776401178 @default.
- W2523265165 hasConcept C41008148 @default.
- W2523265165 hasConcept C41895202 @default.
- W2523265165 hasConcept C52622490 @default.
- W2523265165 hasConcept C89600930 @default.
- W2523265165 hasConceptScore W2523265165C12267149 @default.
- W2523265165 hasConceptScore W2523265165C138885662 @default.
- W2523265165 hasConceptScore W2523265165C153180895 @default.
- W2523265165 hasConceptScore W2523265165C154945302 @default.
- W2523265165 hasConceptScore W2523265165C159078339 @default.
- W2523265165 hasConceptScore W2523265165C160633673 @default.
- W2523265165 hasConceptScore W2523265165C2776401178 @default.
- W2523265165 hasConceptScore W2523265165C41008148 @default.
- W2523265165 hasConceptScore W2523265165C41895202 @default.
- W2523265165 hasConceptScore W2523265165C52622490 @default.
- W2523265165 hasConceptScore W2523265165C89600930 @default.
- W2523265165 hasIssue "3" @default.
- W2523265165 hasLocation W25232651651 @default.
- W2523265165 hasLocation W25232651652 @default.
- W2523265165 hasOpenAccess W2523265165 @default.
- W2523265165 hasPrimaryLocation W25232651651 @default.
- W2523265165 hasRelatedWork W2126100045 @default.
- W2523265165 hasRelatedWork W2336974148 @default.
- W2523265165 hasRelatedWork W2972973180 @default.
- W2523265165 hasRelatedWork W3173596272 @default.
- W2523265165 hasRelatedWork W3211035526 @default.