Matches in SemOpenAlex for { <https://semopenalex.org/work/W2523312993> ?p ?o ?g. }
- W2523312993 abstract "The demand for energy is increasingly covered through renewable energy sources. As a consequence, conventional power plants need to respond to power fluctuations in the grid much more frequently than in the past. Additionally, steam turbine components are expected to deal with high loads due to this new kind of energy management. Changes in steam temperature caused by rapid load changes or fast starts lead to high levels of thermal stress in the turbine components. Therefore, todays energy market requires highly efficient power plants which can be operated under flexible conditions. In order to meet the current and future market requirements, turbine components are optimized with respect to multi-dimensional target functions. The development of steam turbine components is a complex process involving different engineering disciplines and time-consuming calculations. Currently, optimization is used most frequently for subtasks within the individual discipline. For a holistic approach, highly efficient calculation methods, which are able to deal with high dimensional and multidisciplinary systems, are needed. One approach to solve this problem is the usage of surrogate models using mathematical methods e.g. polynomial regression or the more sophisticated Kriging. With proper training, these methods can deliver results which are nearly as accurate as the full model calculations themselves in a fraction of time. Surrogate models have to face different requirements: the underlying outputs can be, for example, highly non-linear, noisy or discontinuous. In addition, the surrogate models need to be constructed out of a large number of variables, where often only a few parameters are important. In order to achieve good prognosis quality only the most important parameters should be used to create the surrogate models. Unimportant parameters do not improve the prognosis quality but generate additional noise to the approximation result. Another challenge is to achieve good results with as little design information as possible. This is important because in practice the necessary information is usually only obtained by very time-consuming simulations. This paper presents an efficient optimization procedure using a self-developed hybrid surrogate model consisting of moving least squares and anisotropic Kriging. With its maximized prognosis quality, it is capable of handling the challenges mentioned above. This enables time-efficient optimization. Additionally, a preceding sensitivity analysis identifies the most important parameters regarding the objectives. This leads to a fast convergence of the optimization and a more accurate surrogate model. An example of this method is shown for the optimization of a labyrinth shaft seal used in steam turbines. Within the optimization the opposed objectives of minimizing leakage mass flow and decreasing total enthalpy increase due to friction are considered." @default.
- W2523312993 created "2016-09-30" @default.
- W2523312993 creator A5007941430 @default.
- W2523312993 creator A5009235321 @default.
- W2523312993 creator A5009268556 @default.
- W2523312993 creator A5010736384 @default.
- W2523312993 creator A5057727279 @default.
- W2523312993 creator A5058485590 @default.
- W2523312993 date "2016-06-13" @default.
- W2523312993 modified "2023-09-26" @default.
- W2523312993 title "Efficient Multi-Objective Optimization of Labyrinth Seal Leakage in Steam Turbines Based on Hybrid Surrogate Models" @default.
- W2523312993 cites W100464641 @default.
- W2523312993 cites W111145017 @default.
- W2523312993 cites W1559956479 @default.
- W2523312993 cites W173789587 @default.
- W2523312993 cites W1974097079 @default.
- W2523312993 cites W1988744163 @default.
- W2523312993 cites W2015212251 @default.
- W2523312993 cites W2017807739 @default.
- W2523312993 cites W2028729397 @default.
- W2523312993 cites W2033673458 @default.
- W2523312993 cites W2036887984 @default.
- W2523312993 cites W2038669746 @default.
- W2523312993 cites W2055772055 @default.
- W2523312993 cites W2078483536 @default.
- W2523312993 cites W2085718552 @default.
- W2523312993 cites W2087207884 @default.
- W2523312993 cites W2093229042 @default.
- W2523312993 cites W2098043077 @default.
- W2523312993 cites W2109523839 @default.
- W2523312993 cites W2110029398 @default.
- W2523312993 cites W2114013702 @default.
- W2523312993 cites W2116223812 @default.
- W2523312993 cites W2168350331 @default.
- W2523312993 cites W2615258659 @default.
- W2523312993 cites W2890351024 @default.
- W2523312993 doi "https://doi.org/10.1115/gt2016-57457" @default.
- W2523312993 hasPublicationYear "2016" @default.
- W2523312993 type Work @default.
- W2523312993 sameAs 2523312993 @default.
- W2523312993 citedByCount "4" @default.
- W2523312993 countsByYear W25233129932016 @default.
- W2523312993 countsByYear W25233129932017 @default.
- W2523312993 countsByYear W25233129932020 @default.
- W2523312993 crossrefType "proceedings-article" @default.
- W2523312993 hasAuthorship W2523312993A5007941430 @default.
- W2523312993 hasAuthorship W2523312993A5009235321 @default.
- W2523312993 hasAuthorship W2523312993A5009268556 @default.
- W2523312993 hasAuthorship W2523312993A5010736384 @default.
- W2523312993 hasAuthorship W2523312993A5057727279 @default.
- W2523312993 hasAuthorship W2523312993A5058485590 @default.
- W2523312993 hasConcept C119857082 @default.
- W2523312993 hasConcept C127413603 @default.
- W2523312993 hasConcept C131675550 @default.
- W2523312993 hasConcept C139719470 @default.
- W2523312993 hasConcept C162324750 @default.
- W2523312993 hasConcept C200601418 @default.
- W2523312993 hasConcept C21880701 @default.
- W2523312993 hasConcept C2777042071 @default.
- W2523312993 hasConcept C2778449969 @default.
- W2523312993 hasConcept C2780313912 @default.
- W2523312993 hasConcept C41008148 @default.
- W2523312993 hasConcept C78519656 @default.
- W2523312993 hasConceptScore W2523312993C119857082 @default.
- W2523312993 hasConceptScore W2523312993C127413603 @default.
- W2523312993 hasConceptScore W2523312993C131675550 @default.
- W2523312993 hasConceptScore W2523312993C139719470 @default.
- W2523312993 hasConceptScore W2523312993C162324750 @default.
- W2523312993 hasConceptScore W2523312993C200601418 @default.
- W2523312993 hasConceptScore W2523312993C21880701 @default.
- W2523312993 hasConceptScore W2523312993C2777042071 @default.
- W2523312993 hasConceptScore W2523312993C2778449969 @default.
- W2523312993 hasConceptScore W2523312993C2780313912 @default.
- W2523312993 hasConceptScore W2523312993C41008148 @default.
- W2523312993 hasConceptScore W2523312993C78519656 @default.
- W2523312993 hasLocation W25233129931 @default.
- W2523312993 hasOpenAccess W2523312993 @default.
- W2523312993 hasPrimaryLocation W25233129931 @default.
- W2523312993 hasRelatedWork W1983762210 @default.
- W2523312993 hasRelatedWork W2137256895 @default.
- W2523312993 hasRelatedWork W2147694090 @default.
- W2523312993 hasRelatedWork W2178644043 @default.
- W2523312993 hasRelatedWork W2215345107 @default.
- W2523312993 hasRelatedWork W2368760463 @default.
- W2523312993 hasRelatedWork W2462161302 @default.
- W2523312993 hasRelatedWork W2594915597 @default.
- W2523312993 hasRelatedWork W2620728022 @default.
- W2523312993 hasRelatedWork W2741969626 @default.
- W2523312993 hasRelatedWork W2767109210 @default.
- W2523312993 hasRelatedWork W2811175697 @default.
- W2523312993 hasRelatedWork W2889270569 @default.
- W2523312993 hasRelatedWork W2889477561 @default.
- W2523312993 hasRelatedWork W2909103624 @default.
- W2523312993 hasRelatedWork W2917142910 @default.
- W2523312993 hasRelatedWork W2981874138 @default.
- W2523312993 hasRelatedWork W3090156083 @default.
- W2523312993 hasRelatedWork W3200779927 @default.
- W2523312993 hasRelatedWork W96255247 @default.
- W2523312993 isParatext "false" @default.
- W2523312993 isRetracted "false" @default.