Matches in SemOpenAlex for { <https://semopenalex.org/work/W2523446631> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2523446631 abstract "A century-old goal of electrochemistry has been a fuel cell that could generate electricity from elemental carbon derived from fossil or biological resources. This would avoid inefficiencies of heat engines and the pollution associated with combustion. Initial enthusiasm in the early 20th century was dampened by the apparent incompatibility of coulombic yield and high power. The high temperatures required for acceptable power seemed to produce only CO (see review by Liebhafsky). Later, Tamaru, Weaver and Nanis ,4 and Vutetakis identified a temperature range (ca. 650-750 C) where certain atomically disordered carbon morphologies yielded both high current efficiency and low polarization at acceptable rates (1 kA/m). In 2000, Cooper et al. experimented with full cells combining gas diffusion cathodes, meltsaturated porous separators, and reactive chars that yielded cell voltages of 0.8 V at 700-750 C; these results predict 70-80% efficiency when combined with Weaver's data from gas analysis for the same materials. The enduring interest in carbon fuel cells derives from a uniquely favorable thermodynamics. Not only is the entropy change of the reaction (C + O2 = CO2, 1.02V) nearly zero, but the carbon and the CO2 product occupy separate phases at unit activity. This makes possible the operation of cells with spatially invariant composition, leading to complete fuel utilization in a single pass. Since 1998, Hemmes and coworkers have conducted comprehensive energy and economic analyses of alternative strategies for conversion of elemental carbon. Their work includes evaluation of processes using molten salt and/or solid ion conductors, solarassisted electrochemical gasification of carbon, and fuel cell conversion of product CO. Early work investigated the graphite anode using IS and polarography. In the last five years the number of scientific and technical publications have far exceeded the combined output of the previous century. Yongdan Li developed a physical model grounded in Hemmes' measurements, and predicted not only the controlling role of atomic disorder in kinetics, but also the shift from Boudouard equilibrium (C + CO2 = 2CO) near the open circuit to full conversion to CO2 at higher polarization-phenomena long noted but never adequately explained. Cao examined the role of surface oxidic groups and enhanced edge site density (resulting from HF dissolution of metal oxide impurities) that increase anode rates by an order of magnitude. Research by Zhu in slurries found a temperature range yielding high total efficiency and a dependence of rate on functional groups and morphology. Irvine is investigating YSZ and ceria membranes in contact with dry or melt-wetted carbon, finding parallel conversion of carbon and hydrogen from chars containing substantial -CHbonds. Along with Li and others, Irvine is studying lower temperature cells using melt-saturated porous electrodes based on ceria--with evidence of parallel ion conduction in the solid and melt. Varlamov works with a novel configuration that uses a pressure difference across a screen to maintain gasimpermeable separation. Selman and coworkers are developing kinetic models that describe the interplay of time-dependent wetting and reaction distribution in porous graphite, using electrochemical cells that allow visual monitoring of the meniscus. Achieving 70-80% total efficiency (ref. ΔH°) is a problem of balancing the effects of atomic disorder, fuel accessibility and ease of CO2 egress, potential and reaction distribution in porous anodes, and progressive wetting. Prospects for fuel cell conversion of carbon require attention to at least these areas of research: (1) The relation of total efficiency to rate must be derived from simultaneous measurements of anode potential and off-gas composition in C/O2 cells, using materials that are well-characterized in recent literature. (2) An integrated model is needed that combines porous electrode theory, time-dependent wetting, atomic disorder, and accessibility of carbon in the fuel chamber. (3) Carbon fuel cells should be examined for potential advantages in distributed power generation, transportable generators for local grid enhancement, and dedicated DC power for electrochemical industries. (4) Applications of the carbon fuel cell include: use of CO2-consuming cathode to collect and concentrate CO2 from stack gases; hydrogenation of coal followed by cracking of evolved CH4; pyrolysis of agricultural and biosynthesis wastes into carbon and gaseous fuels. The potential for a carbon fuel cell to improve the way the Earth uses its limitless supply of fossil and renewable carbon is also limitless." @default.
- W2523446631 created "2016-09-30" @default.
- W2523446631 creator A5020592243 @default.
- W2523446631 creator A5075513439 @default.
- W2523446631 date "2011-01-01" @default.
- W2523446631 modified "2023-10-16" @default.
- W2523446631 title "Prospects for Conversion of Elemental Carbon from Fossil or Renewable Sources in Fuel Cells" @default.
- W2523446631 cites W142550889 @default.
- W2523446631 cites W1536255378 @default.
- W2523446631 cites W1984714461 @default.
- W2523446631 cites W2799238611 @default.
- W2523446631 cites W3020400132 @default.
- W2523446631 doi "https://doi.org/10.1149/ma2011-02/5/256" @default.
- W2523446631 hasPublicationYear "2011" @default.
- W2523446631 type Work @default.
- W2523446631 sameAs 2523446631 @default.
- W2523446631 citedByCount "0" @default.
- W2523446631 crossrefType "journal-article" @default.
- W2523446631 hasAuthorship W2523446631A5020592243 @default.
- W2523446631 hasAuthorship W2523446631A5075513439 @default.
- W2523446631 hasBestOaLocation W25234466311 @default.
- W2523446631 hasConcept C104779481 @default.
- W2523446631 hasConcept C105923489 @default.
- W2523446631 hasConcept C119599485 @default.
- W2523446631 hasConcept C121332964 @default.
- W2523446631 hasConcept C127413603 @default.
- W2523446631 hasConcept C130349721 @default.
- W2523446631 hasConcept C140205800 @default.
- W2523446631 hasConcept C147789679 @default.
- W2523446631 hasConcept C159985019 @default.
- W2523446631 hasConcept C163258240 @default.
- W2523446631 hasConcept C17525397 @default.
- W2523446631 hasConcept C178790620 @default.
- W2523446631 hasConcept C185592680 @default.
- W2523446631 hasConcept C188573790 @default.
- W2523446631 hasConcept C192562407 @default.
- W2523446631 hasConcept C39432304 @default.
- W2523446631 hasConcept C423512 @default.
- W2523446631 hasConcept C42360764 @default.
- W2523446631 hasConcept C52859227 @default.
- W2523446631 hasConcept C68189081 @default.
- W2523446631 hasConcept C97355855 @default.
- W2523446631 hasConceptScore W2523446631C104779481 @default.
- W2523446631 hasConceptScore W2523446631C105923489 @default.
- W2523446631 hasConceptScore W2523446631C119599485 @default.
- W2523446631 hasConceptScore W2523446631C121332964 @default.
- W2523446631 hasConceptScore W2523446631C127413603 @default.
- W2523446631 hasConceptScore W2523446631C130349721 @default.
- W2523446631 hasConceptScore W2523446631C140205800 @default.
- W2523446631 hasConceptScore W2523446631C147789679 @default.
- W2523446631 hasConceptScore W2523446631C159985019 @default.
- W2523446631 hasConceptScore W2523446631C163258240 @default.
- W2523446631 hasConceptScore W2523446631C17525397 @default.
- W2523446631 hasConceptScore W2523446631C178790620 @default.
- W2523446631 hasConceptScore W2523446631C185592680 @default.
- W2523446631 hasConceptScore W2523446631C188573790 @default.
- W2523446631 hasConceptScore W2523446631C192562407 @default.
- W2523446631 hasConceptScore W2523446631C39432304 @default.
- W2523446631 hasConceptScore W2523446631C423512 @default.
- W2523446631 hasConceptScore W2523446631C42360764 @default.
- W2523446631 hasConceptScore W2523446631C52859227 @default.
- W2523446631 hasConceptScore W2523446631C68189081 @default.
- W2523446631 hasConceptScore W2523446631C97355855 @default.
- W2523446631 hasLocation W25234466311 @default.
- W2523446631 hasOpenAccess W2523446631 @default.
- W2523446631 hasPrimaryLocation W25234466311 @default.
- W2523446631 hasRelatedWork W1511820543 @default.
- W2523446631 hasRelatedWork W1963817634 @default.
- W2523446631 hasRelatedWork W1985626408 @default.
- W2523446631 hasRelatedWork W1988413957 @default.
- W2523446631 hasRelatedWork W1991003106 @default.
- W2523446631 hasRelatedWork W2007178919 @default.
- W2523446631 hasRelatedWork W2036486827 @default.
- W2523446631 hasRelatedWork W2046997304 @default.
- W2523446631 hasRelatedWork W2050443689 @default.
- W2523446631 hasRelatedWork W2060403804 @default.
- W2523446631 hasRelatedWork W2067457175 @default.
- W2523446631 hasRelatedWork W2089594892 @default.
- W2523446631 hasRelatedWork W2163698847 @default.
- W2523446631 hasRelatedWork W2338519307 @default.
- W2523446631 hasRelatedWork W2380074242 @default.
- W2523446631 hasRelatedWork W2606279974 @default.
- W2523446631 hasRelatedWork W2767608202 @default.
- W2523446631 hasRelatedWork W3118965627 @default.
- W2523446631 hasRelatedWork W3156651954 @default.
- W2523446631 hasRelatedWork W2829930721 @default.
- W2523446631 isParatext "false" @default.
- W2523446631 isRetracted "false" @default.
- W2523446631 magId "2523446631" @default.
- W2523446631 workType "article" @default.