Matches in SemOpenAlex for { <https://semopenalex.org/work/W2523503533> ?p ?o ?g. }
- W2523503533 endingPage "9737" @default.
- W2523503533 startingPage "9729" @default.
- W2523503533 abstract "Crystalline 2D hexagonal boron nitride (2D-hBN) nanosheets are explored as a potential electrocatalyst toward the electroanalytical sensing of dopamine (DA). The 2D-hBN nanosheets are electrically wired via a drop-casting modification process onto a range of commercially available carbon supporting electrodes, including glassy carbon (GC), boron-doped diamond (BDD), and screen-printed graphitic electrodes (SPEs). 2D-hBN has not previously been explored toward the electrochemical detection/electrochemical sensing of DA. We critically evaluate the potential electrocatalytic performance of 2D-hBN modified electrodes, the effect of supporting carbon electrode platforms, and the effect of mass coverage (which is commonly neglected in the 2D material literature) toward the detection of DA. The response of 2D-hBN modified electrodes is found to be largely dependent upon the interaction between 2D-hBN and the underlying supporting electrode material. For example, in the case of SPEs, modification with 2D-hBN (324 ng) improves the electrochemical response, decreasing the electrochemical oxidation potential of DA by ∼90 mV compared to an unmodified SPE. Conversely, modification of a GC electrode with 2D-hBN (324 ng) resulted in an increased oxidation potential of DA by ∼80 mV when compared to the unmodified electrode. We explore the underlying mechanisms of the aforementioned examples and infer that electrode surface interactions and roughness factors are critical considerations. 2D-hBN is utilized toward the sensing of DA in the presence of the common interferents ascorbic acid (AA) and uric acid (UA). 2D-hBN is found to be an effective electrocatalyst in the simultaneous detection of DA and UA at both pH 5.0 and 7.4. The peak separations/resolution between DA and UA increases by ∼70 and 50 mV (at pH 5.0 and 7.4, respectively, when utilizing 108 ng of 2D-hBN) compared to unmodified SPEs, with a particularly favorable response evident in pH 5.0, giving rise to a significant increase in the peak current of DA. The limit of detection (3σ) is found to correspond to 0.65 μM for DA in the presence of UA. However, it is not possible to deconvolute the simultaneous detection of DA and AA. The observed electrocatalytic effect at 2D-hBN has not previously been reported in the literature when supported upon carbon or any other electrode. We provide valuable insights into the modifier-substrate interactions of this material, essential for those designing, fabricating, and consequently performing electrochemical experiments utilizing 2D-hBN and related 2D materials." @default.
- W2523503533 created "2016-09-30" @default.
- W2523503533 creator A5006953226 @default.
- W2523503533 creator A5072793626 @default.
- W2523503533 creator A5082855689 @default.
- W2523503533 creator A5086231476 @default.
- W2523503533 creator A5089064536 @default.
- W2523503533 date "2016-09-23" @default.
- W2523503533 modified "2023-10-14" @default.
- W2523503533 title "2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine" @default.
- W2523503533 cites W1026426193 @default.
- W2523503533 cites W1836599342 @default.
- W2523503533 cites W1963830333 @default.
- W2523503533 cites W1964552850 @default.
- W2523503533 cites W1964947562 @default.
- W2523503533 cites W1975829058 @default.
- W2523503533 cites W1976149946 @default.
- W2523503533 cites W1979780255 @default.
- W2523503533 cites W1981053966 @default.
- W2523503533 cites W1984246872 @default.
- W2523503533 cites W1985740657 @default.
- W2523503533 cites W1987177520 @default.
- W2523503533 cites W1987730936 @default.
- W2523503533 cites W1997652293 @default.
- W2523503533 cites W2000871435 @default.
- W2523503533 cites W2000993541 @default.
- W2523503533 cites W2005540011 @default.
- W2523503533 cites W2017154551 @default.
- W2523503533 cites W2019523883 @default.
- W2523503533 cites W2019623212 @default.
- W2523503533 cites W2020067187 @default.
- W2523503533 cites W2020140500 @default.
- W2523503533 cites W2021540064 @default.
- W2523503533 cites W2025946073 @default.
- W2523503533 cites W2036620148 @default.
- W2523503533 cites W2047428012 @default.
- W2523503533 cites W2047554682 @default.
- W2523503533 cites W2051395967 @default.
- W2523503533 cites W2055063733 @default.
- W2523503533 cites W2062915094 @default.
- W2523503533 cites W2063267543 @default.
- W2523503533 cites W2063724387 @default.
- W2523503533 cites W2068305644 @default.
- W2523503533 cites W2074770479 @default.
- W2523503533 cites W2079962302 @default.
- W2523503533 cites W2083729781 @default.
- W2523503533 cites W2088145822 @default.
- W2523503533 cites W2094612814 @default.
- W2523503533 cites W2098369847 @default.
- W2523503533 cites W2120210194 @default.
- W2523503533 cites W2134586679 @default.
- W2523503533 cites W2136739352 @default.
- W2523503533 cites W2159244118 @default.
- W2523503533 cites W2161027066 @default.
- W2523503533 cites W2164481537 @default.
- W2523503533 cites W2252889881 @default.
- W2523503533 cites W2294493129 @default.
- W2523503533 cites W2333976655 @default.
- W2523503533 cites W2334887511 @default.
- W2523503533 cites W2472113295 @default.
- W2523503533 cites W2524894415 @default.
- W2523503533 cites W3098451852 @default.
- W2523503533 cites W619624420 @default.
- W2523503533 doi "https://doi.org/10.1021/acs.analchem.6b02638" @default.
- W2523503533 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27659497" @default.
- W2523503533 hasPublicationYear "2016" @default.
- W2523503533 type Work @default.
- W2523503533 sameAs 2523503533 @default.
- W2523503533 citedByCount "147" @default.
- W2523503533 countsByYear W25235035332017 @default.
- W2523503533 countsByYear W25235035332018 @default.
- W2523503533 countsByYear W25235035332019 @default.
- W2523503533 countsByYear W25235035332020 @default.
- W2523503533 countsByYear W25235035332021 @default.
- W2523503533 countsByYear W25235035332022 @default.
- W2523503533 countsByYear W25235035332023 @default.
- W2523503533 crossrefType "journal-article" @default.
- W2523503533 hasAuthorship W2523503533A5006953226 @default.
- W2523503533 hasAuthorship W2523503533A5072793626 @default.
- W2523503533 hasAuthorship W2523503533A5082855689 @default.
- W2523503533 hasAuthorship W2523503533A5086231476 @default.
- W2523503533 hasAuthorship W2523503533A5089064536 @default.
- W2523503533 hasBestOaLocation W25235035331 @default.
- W2523503533 hasConcept C127413603 @default.
- W2523503533 hasConcept C147789679 @default.
- W2523503533 hasConcept C171250308 @default.
- W2523503533 hasConcept C17525397 @default.
- W2523503533 hasConcept C178790620 @default.
- W2523503533 hasConcept C179104552 @default.
- W2523503533 hasConcept C185592680 @default.
- W2523503533 hasConcept C192562407 @default.
- W2523503533 hasConcept C2776422427 @default.
- W2523503533 hasConcept C2776921476 @default.
- W2523503533 hasConcept C2777869211 @default.
- W2523503533 hasConcept C2986274086 @default.
- W2523503533 hasConcept C2991998659 @default.
- W2523503533 hasConcept C30080830 @default.
- W2523503533 hasConcept C31903555 @default.