Matches in SemOpenAlex for { <https://semopenalex.org/work/W2523625823> ?p ?o ?g. }
- W2523625823 endingPage "321" @default.
- W2523625823 startingPage "309" @default.
- W2523625823 abstract "The medical crowdsourced question answering (Q&A) websites are booming in recent years, and an increasingly large amount of patients and doctors are involved. The valuable information from these medical crowdsourced Q&A websites can benefit patients, doctors and the society. One key to unleash the power of these Q&A websites is to extract medical knowledge from the noisy question-answer pairs and filter out unrelated or even incorrect information. Facing the daunting scale of information generated on medical Q&A websites everyday, it is unrealistic to fulfill this task via supervised method due to the expensive annotation cost. In this paper, we propose a Medical Knowledge Extraction (MKE) system that can automatically provide high-quality knowledge triples extracted from the noisy question-answer pairs, and at the same time, estimate expertise for the doctors who give answers on these Q&A websites. The MKE system is built upon a truth discovery framework, where we jointly estimate trustworthiness of answers and doctor expertise from the data without any supervision. We further tackle three unique challenges in the medical knowledge extraction task, namely representation of noisy input, multiple linked truths, and the long-tail phenomenon in the data. The MKE system is applied to real-world datasets crawled from <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>xywy.com</uri> , one of the most popular medical crowdsourced Q&A websites. Both quantitative evaluation and case studies demonstrate that the proposed MKE system can successfully provide useful medical knowledge and accurate doctor expertise. We further demonstrate a real-world application, <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Ask A Doctor</i> , which can automatically give patients suggestions to their questions." @default.
- W2523625823 created "2016-09-30" @default.
- W2523625823 creator A5013268903 @default.
- W2523625823 creator A5017147857 @default.
- W2523625823 creator A5020746135 @default.
- W2523625823 creator A5038836690 @default.
- W2523625823 creator A5046576694 @default.
- W2523625823 creator A5047737556 @default.
- W2523625823 creator A5059941852 @default.
- W2523625823 creator A5089176198 @default.
- W2523625823 date "2020-06-01" @default.
- W2523625823 modified "2023-09-30" @default.
- W2523625823 title "Extracting Medical Knowledge from Crowdsourced Question Answering Website" @default.
- W2523625823 cites W1521736627 @default.
- W2523625823 cites W1541280084 @default.
- W2523625823 cites W1565102206 @default.
- W2523625823 cites W1972703786 @default.
- W2523625823 cites W2013787102 @default.
- W2523625823 cites W2016753842 @default.
- W2523625823 cites W2022149269 @default.
- W2523625823 cites W2035336846 @default.
- W2523625823 cites W2037858832 @default.
- W2523625823 cites W2057415299 @default.
- W2523625823 cites W2071309374 @default.
- W2523625823 cites W2072055539 @default.
- W2523625823 cites W2073545563 @default.
- W2523625823 cites W2086413055 @default.
- W2523625823 cites W2102956348 @default.
- W2523625823 cites W2107254606 @default.
- W2523625823 cites W2117130368 @default.
- W2523625823 cites W2118388899 @default.
- W2523625823 cites W2129251351 @default.
- W2523625823 cites W2155160033 @default.
- W2523625823 cites W2155189155 @default.
- W2523625823 cites W2159296364 @default.
- W2523625823 cites W2161152375 @default.
- W2523625823 cites W2169585110 @default.
- W2523625823 cites W2290431464 @default.
- W2523625823 cites W4230673375 @default.
- W2523625823 cites W4241569833 @default.
- W2523625823 doi "https://doi.org/10.1109/tbdata.2016.2612236" @default.
- W2523625823 hasPublicationYear "2020" @default.
- W2523625823 type Work @default.
- W2523625823 sameAs 2523625823 @default.
- W2523625823 citedByCount "23" @default.
- W2523625823 countsByYear W25236258232017 @default.
- W2523625823 countsByYear W25236258232018 @default.
- W2523625823 countsByYear W25236258232020 @default.
- W2523625823 countsByYear W25236258232021 @default.
- W2523625823 countsByYear W25236258232022 @default.
- W2523625823 countsByYear W25236258232023 @default.
- W2523625823 crossrefType "journal-article" @default.
- W2523625823 hasAuthorship W2523625823A5013268903 @default.
- W2523625823 hasAuthorship W2523625823A5017147857 @default.
- W2523625823 hasAuthorship W2523625823A5020746135 @default.
- W2523625823 hasAuthorship W2523625823A5038836690 @default.
- W2523625823 hasAuthorship W2523625823A5046576694 @default.
- W2523625823 hasAuthorship W2523625823A5047737556 @default.
- W2523625823 hasAuthorship W2523625823A5059941852 @default.
- W2523625823 hasAuthorship W2523625823A5089176198 @default.
- W2523625823 hasBestOaLocation W25236258231 @default.
- W2523625823 hasConcept C106131492 @default.
- W2523625823 hasConcept C120567893 @default.
- W2523625823 hasConcept C136764020 @default.
- W2523625823 hasConcept C154945302 @default.
- W2523625823 hasConcept C162324750 @default.
- W2523625823 hasConcept C187736073 @default.
- W2523625823 hasConcept C23123220 @default.
- W2523625823 hasConcept C2522767166 @default.
- W2523625823 hasConcept C26517878 @default.
- W2523625823 hasConcept C2776321320 @default.
- W2523625823 hasConcept C2780451532 @default.
- W2523625823 hasConcept C31972630 @default.
- W2523625823 hasConcept C38652104 @default.
- W2523625823 hasConcept C41008148 @default.
- W2523625823 hasConcept C44291984 @default.
- W2523625823 hasConcept C62230096 @default.
- W2523625823 hasConceptScore W2523625823C106131492 @default.
- W2523625823 hasConceptScore W2523625823C120567893 @default.
- W2523625823 hasConceptScore W2523625823C136764020 @default.
- W2523625823 hasConceptScore W2523625823C154945302 @default.
- W2523625823 hasConceptScore W2523625823C162324750 @default.
- W2523625823 hasConceptScore W2523625823C187736073 @default.
- W2523625823 hasConceptScore W2523625823C23123220 @default.
- W2523625823 hasConceptScore W2523625823C2522767166 @default.
- W2523625823 hasConceptScore W2523625823C26517878 @default.
- W2523625823 hasConceptScore W2523625823C2776321320 @default.
- W2523625823 hasConceptScore W2523625823C2780451532 @default.
- W2523625823 hasConceptScore W2523625823C31972630 @default.
- W2523625823 hasConceptScore W2523625823C38652104 @default.
- W2523625823 hasConceptScore W2523625823C41008148 @default.
- W2523625823 hasConceptScore W2523625823C44291984 @default.
- W2523625823 hasConceptScore W2523625823C62230096 @default.
- W2523625823 hasFunder F4320306076 @default.
- W2523625823 hasIssue "2" @default.
- W2523625823 hasLocation W25236258231 @default.
- W2523625823 hasOpenAccess W2523625823 @default.
- W2523625823 hasPrimaryLocation W25236258231 @default.