Matches in SemOpenAlex for { <https://semopenalex.org/work/W2523640292> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2523640292 abstract "This chapter formulates and demonstrates adaptive fractional polynomial modeling of means and dispersions for repeatedly measured count outcomes, possibly converted to rates using offsets. Marginal modeling extends from the multivariate normal outcome context to the multivariate count/rate outcome context. However, due to the complexity in general of computing likelihoods and quasi-likelihoods (as needed to account for non-unit dispersions) for general multivariate marginal modeling, generalized estimating equations (GEE) techniques are often used instead, thereby avoiding computation of likelihoods and quasi-likelihoods. This complicates the extension of adaptive modeling to the GEE context since it is based on cross-validation (CV) scores computed from likelihoods or likelihood-like functions, but a readily computed extended likelihood is formulated for use in adaptive GEE-based modeling of multivariate count/rate outcomes. Conditional modeling also extends to the multivariate count/rate outcome context, both transition modeling and general conditional modeling. In contrast to marginal GEE-based modeling, conditional modeling of means for multivariate count/rate outcomes with unit dispersions is based on pseudolikelihoods that can be used to compute pseudolikelihood CV (PLCV) scores on which to base adaptive transition and general conditional modeling of multivariate count/rate outcomes. These marginal and conditional models can be extended to model dispersions as well as means. Example analyses of these kinds are presented of the post-baseline seizure rates per day over time for patients with epilepsy in terms of the baseline seizure rate, clinic visit, and treatment group (prescribed the drug progabide versus a placebo)." @default.
- W2523640292 created "2016-09-30" @default.
- W2523640292 creator A5023246618 @default.
- W2523640292 creator A5090773374 @default.
- W2523640292 date "2016-01-01" @default.
- W2523640292 modified "2023-09-27" @default.
- W2523640292 title "Adaptive Poisson Regression Modeling of Univariate Count Outcomes" @default.
- W2523640292 cites W1526182533 @default.
- W2523640292 cites W1976175860 @default.
- W2523640292 cites W2035983506 @default.
- W2523640292 cites W2089887873 @default.
- W2523640292 cites W2110776215 @default.
- W2523640292 cites W2149860264 @default.
- W2523640292 cites W579425505 @default.
- W2523640292 doi "https://doi.org/10.1007/978-3-319-33946-7_12" @default.
- W2523640292 hasPublicationYear "2016" @default.
- W2523640292 type Work @default.
- W2523640292 sameAs 2523640292 @default.
- W2523640292 citedByCount "0" @default.
- W2523640292 crossrefType "book-chapter" @default.
- W2523640292 hasAuthorship W2523640292A5023246618 @default.
- W2523640292 hasAuthorship W2523640292A5090773374 @default.
- W2523640292 hasConcept C100906024 @default.
- W2523640292 hasConcept C105795698 @default.
- W2523640292 hasConcept C144237770 @default.
- W2523640292 hasConcept C148220186 @default.
- W2523640292 hasConcept C149782125 @default.
- W2523640292 hasConcept C151730666 @default.
- W2523640292 hasConcept C152877465 @default.
- W2523640292 hasConcept C161584116 @default.
- W2523640292 hasConcept C185429906 @default.
- W2523640292 hasConcept C197656967 @default.
- W2523640292 hasConcept C199163554 @default.
- W2523640292 hasConcept C204016326 @default.
- W2523640292 hasConcept C27403532 @default.
- W2523640292 hasConcept C2779343474 @default.
- W2523640292 hasConcept C33643355 @default.
- W2523640292 hasConcept C33923547 @default.
- W2523640292 hasConcept C86803240 @default.
- W2523640292 hasConceptScore W2523640292C100906024 @default.
- W2523640292 hasConceptScore W2523640292C105795698 @default.
- W2523640292 hasConceptScore W2523640292C144237770 @default.
- W2523640292 hasConceptScore W2523640292C148220186 @default.
- W2523640292 hasConceptScore W2523640292C149782125 @default.
- W2523640292 hasConceptScore W2523640292C151730666 @default.
- W2523640292 hasConceptScore W2523640292C152877465 @default.
- W2523640292 hasConceptScore W2523640292C161584116 @default.
- W2523640292 hasConceptScore W2523640292C185429906 @default.
- W2523640292 hasConceptScore W2523640292C197656967 @default.
- W2523640292 hasConceptScore W2523640292C199163554 @default.
- W2523640292 hasConceptScore W2523640292C204016326 @default.
- W2523640292 hasConceptScore W2523640292C27403532 @default.
- W2523640292 hasConceptScore W2523640292C2779343474 @default.
- W2523640292 hasConceptScore W2523640292C33643355 @default.
- W2523640292 hasConceptScore W2523640292C33923547 @default.
- W2523640292 hasConceptScore W2523640292C86803240 @default.
- W2523640292 hasLocation W25236402921 @default.
- W2523640292 hasOpenAccess W2523640292 @default.
- W2523640292 hasPrimaryLocation W25236402921 @default.
- W2523640292 hasRelatedWork W1492830896 @default.
- W2523640292 hasRelatedWork W2027287677 @default.
- W2523640292 hasRelatedWork W2037305212 @default.
- W2523640292 hasRelatedWork W2051479180 @default.
- W2523640292 hasRelatedWork W2053779301 @default.
- W2523640292 hasRelatedWork W2061852945 @default.
- W2523640292 hasRelatedWork W2077599320 @default.
- W2523640292 hasRelatedWork W2105004777 @default.
- W2523640292 hasRelatedWork W2109048178 @default.
- W2523640292 hasRelatedWork W2161581118 @default.
- W2523640292 hasRelatedWork W2163348166 @default.
- W2523640292 hasRelatedWork W2258445574 @default.
- W2523640292 hasRelatedWork W2523680816 @default.
- W2523640292 hasRelatedWork W2564978265 @default.
- W2523640292 hasRelatedWork W2892688771 @default.
- W2523640292 hasRelatedWork W3013158985 @default.
- W2523640292 hasRelatedWork W3137195251 @default.
- W2523640292 hasRelatedWork W3147040413 @default.
- W2523640292 hasRelatedWork W3160570474 @default.
- W2523640292 hasRelatedWork W3203128082 @default.
- W2523640292 isParatext "false" @default.
- W2523640292 isRetracted "false" @default.
- W2523640292 magId "2523640292" @default.
- W2523640292 workType "book-chapter" @default.