Matches in SemOpenAlex for { <https://semopenalex.org/work/W2523642729> ?p ?o ?g. }
- W2523642729 abstract "Abstract Background Accurate motion control of flexible surgical manipulators is crucial in tissue manipulation tasks. The tendon‐driven serpentine manipulator (TSM) is one of the most widely adopted flexible mechanisms in minimally invasive surgery because of its enhanced maneuverability in torturous environments. TSM, however, exhibits high nonlinearities and conventional analytical kinematics model is insufficient to achieve high accuracy. Methods To account for the system nonlinearities, we applied a data driven approach to encode the system inverse kinematics. Three regression methods: extreme learning machine (ELM), Gaussian mixture regression (GMR) and K‐nearest neighbors regression (KNNR) were implemented to learn a nonlinear mapping from the robot 3D position states to the control inputs. Results The performance of the three algorithms was evaluated both in simulation and physical trajectory tracking experiments. KNNR performed the best in the tracking experiments, with the lowest RMSE of 2.1275 mm. Conclusions The proposed inverse kinematics learning methods provide an alternative and efficient way to accurately model the tendon driven flexible manipulator." @default.
- W2523642729 created "2016-09-30" @default.
- W2523642729 creator A5010479652 @default.
- W2523642729 creator A5023887002 @default.
- W2523642729 creator A5032340829 @default.
- W2523642729 creator A5038493735 @default.
- W2523642729 date "2016-09-20" @default.
- W2523642729 modified "2023-10-16" @default.
- W2523642729 title "Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators" @default.
- W2523642729 cites W1489545255 @default.
- W2523642729 cites W1499925623 @default.
- W2523642729 cites W1533067550 @default.
- W2523642729 cites W1601667748 @default.
- W2523642729 cites W1967728830 @default.
- W2523642729 cites W1968032964 @default.
- W2523642729 cites W1977013839 @default.
- W2523642729 cites W1988707210 @default.
- W2523642729 cites W1995071895 @default.
- W2523642729 cites W2007864935 @default.
- W2523642729 cites W2027454283 @default.
- W2523642729 cites W2047875809 @default.
- W2523642729 cites W2084591374 @default.
- W2523642729 cites W2100927926 @default.
- W2523642729 cites W2101674911 @default.
- W2523642729 cites W2104171826 @default.
- W2523642729 cites W2111072639 @default.
- W2523642729 cites W2111605864 @default.
- W2523642729 cites W2126182407 @default.
- W2523642729 cites W2136573752 @default.
- W2523642729 cites W2150205249 @default.
- W2523642729 cites W2165835468 @default.
- W2523642729 cites W2213647436 @default.
- W2523642729 cites W2335272770 @default.
- W2523642729 cites W2411879244 @default.
- W2523642729 cites W2197489321 @default.
- W2523642729 doi "https://doi.org/10.1002/rcs.1774" @default.
- W2523642729 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27647806" @default.
- W2523642729 hasPublicationYear "2016" @default.
- W2523642729 type Work @default.
- W2523642729 sameAs 2523642729 @default.
- W2523642729 citedByCount "43" @default.
- W2523642729 countsByYear W25236427292016 @default.
- W2523642729 countsByYear W25236427292017 @default.
- W2523642729 countsByYear W25236427292019 @default.
- W2523642729 countsByYear W25236427292020 @default.
- W2523642729 countsByYear W25236427292021 @default.
- W2523642729 countsByYear W25236427292022 @default.
- W2523642729 countsByYear W25236427292023 @default.
- W2523642729 crossrefType "journal-article" @default.
- W2523642729 hasAuthorship W2523642729A5010479652 @default.
- W2523642729 hasAuthorship W2523642729A5023887002 @default.
- W2523642729 hasAuthorship W2523642729A5032340829 @default.
- W2523642729 hasAuthorship W2523642729A5038493735 @default.
- W2523642729 hasConcept C121332964 @default.
- W2523642729 hasConcept C1276947 @default.
- W2523642729 hasConcept C13662910 @default.
- W2523642729 hasConcept C154945302 @default.
- W2523642729 hasConcept C158622935 @default.
- W2523642729 hasConcept C160970401 @default.
- W2523642729 hasConcept C17816587 @default.
- W2523642729 hasConcept C187523126 @default.
- W2523642729 hasConcept C207467116 @default.
- W2523642729 hasConcept C2524010 @default.
- W2523642729 hasConcept C2775924081 @default.
- W2523642729 hasConcept C31972630 @default.
- W2523642729 hasConcept C33923547 @default.
- W2523642729 hasConcept C39920418 @default.
- W2523642729 hasConcept C41008148 @default.
- W2523642729 hasConcept C47446073 @default.
- W2523642729 hasConcept C62520636 @default.
- W2523642729 hasConcept C74650414 @default.
- W2523642729 hasConcept C90509273 @default.
- W2523642729 hasConceptScore W2523642729C121332964 @default.
- W2523642729 hasConceptScore W2523642729C1276947 @default.
- W2523642729 hasConceptScore W2523642729C13662910 @default.
- W2523642729 hasConceptScore W2523642729C154945302 @default.
- W2523642729 hasConceptScore W2523642729C158622935 @default.
- W2523642729 hasConceptScore W2523642729C160970401 @default.
- W2523642729 hasConceptScore W2523642729C17816587 @default.
- W2523642729 hasConceptScore W2523642729C187523126 @default.
- W2523642729 hasConceptScore W2523642729C207467116 @default.
- W2523642729 hasConceptScore W2523642729C2524010 @default.
- W2523642729 hasConceptScore W2523642729C2775924081 @default.
- W2523642729 hasConceptScore W2523642729C31972630 @default.
- W2523642729 hasConceptScore W2523642729C33923547 @default.
- W2523642729 hasConceptScore W2523642729C39920418 @default.
- W2523642729 hasConceptScore W2523642729C41008148 @default.
- W2523642729 hasConceptScore W2523642729C47446073 @default.
- W2523642729 hasConceptScore W2523642729C62520636 @default.
- W2523642729 hasConceptScore W2523642729C74650414 @default.
- W2523642729 hasConceptScore W2523642729C90509273 @default.
- W2523642729 hasIssue "3" @default.
- W2523642729 hasLocation W25236427291 @default.
- W2523642729 hasLocation W25236427292 @default.
- W2523642729 hasOpenAccess W2523642729 @default.
- W2523642729 hasPrimaryLocation W25236427291 @default.
- W2523642729 hasRelatedWork W1971821535 @default.
- W2523642729 hasRelatedWork W2119719871 @default.
- W2523642729 hasRelatedWork W2218699221 @default.
- W2523642729 hasRelatedWork W2347988643 @default.