Matches in SemOpenAlex for { <https://semopenalex.org/work/W2523942962> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2523942962 abstract "A compiler is fully-abstract if the compilation from source language programs to target language programs reflects and preserves behavioural equivalence. Such compilers have important security benefits, as they limit the power of an attacker interacting with the program in the target language to that of an attacker interacting with the program in the source language. Proving compiler full-abstraction is, however, rather complicated. A common proof technique is based on the back-translation of target-level program contexts to behaviourallyequivalent source-level contexts. However, constructing such a back-translation is problematic when the source language is not strong enough to embed an encoding of the target language. For instance, when compiling from the simplytyped λ-calculus (λ ) to the untyped λ-calculus (λ), the lack of recursive types in λ prevents such a back-translation. We propose a general and elegant solution for this problem. The key insight is that it suffices to construct an approximate back-translation. The approximation is only accurate up to a certain number of steps and conservative beyond that, in the sense that the context generated by the back-translation may diverge when the original would not, but not vice versa. Based on this insight, we describe a general technique for proving compiler full-abstraction and demonstrate it on a compiler from λ to λ. The proof uses asymmetric cross-language logical relations and makes innovative use of step-indexing to express the relation between a context and its approximate back-translation. We believe this proof technique can scale to challenging settings and enable simpler, more scalable proofs of compiler full-abstraction. This technical appendix provides the full formalisation and proofs for a companion paper by the same title and authors. E-mails: first.last @ cs.kuleuven.be Fully-Abstract Compilation by Approximate Back-Translation: Technical Appendix Dominique Devriese Marco Patrignani ∗ Frank Piessens iMinds-Distrinet, KU Leuven, Belgium first.last @ cs.kuleuven.be Abstract A compiler is fully-abstract if the compilation from source language programs to target language programs reflects and preserves behavioural equivalence. Such compilers have important security benefits, as they limit the power of an attacker interacting with the program in the target language to that of an attacker interacting with the program in the source language. Proving compiler full-abstraction is, however, rather complicated. A common proof technique is based on the back-translation of target-level program contexts to behaviourally-equivalent source-level contexts. However, constructing such a back-translation is problematic when the source language is not strong enough to embed an encoding of the target language. For instance, when compiling from the simply-typed λ-calculus (λ ) to the untyped λ-calculus (λ), the lack of recursive types in λ prevents such a back-translation. We propose a general and elegant solution for this problem. The key insight is that it suffices to construct an approximate back-translation. The approximation is only accurate up to a certain number of steps and conservative beyond that, in the sense that the context generated by the back-translation may diverge when the original would not, but not vice versa. Based on this insight, we describe a general technique for proving compiler full-abstraction and demonstrate it on a compiler from λ to λ. The proof uses asymmetric cross-language logical relations and makes innovative use of step-indexing to express the relation between a context and its approximate back-translation. We believe this proof technique can scale to challenging settings and enable simpler, more scalable proofs of compiler full-abstraction. This technical appendix provides the full formalisation and proofs for a companion paper by the same title and authors [Devriese et al., 2016].A compiler is fully-abstract if the compilation from source language programs to target language programs reflects and preserves behavioural equivalence. Such compilers have important security benefits, as they limit the power of an attacker interacting with the program in the target language to that of an attacker interacting with the program in the source language. Proving compiler full-abstraction is, however, rather complicated. A common proof technique is based on the back-translation of target-level program contexts to behaviourally-equivalent source-level contexts. However, constructing such a back-translation is problematic when the source language is not strong enough to embed an encoding of the target language. For instance, when compiling from the simply-typed λ-calculus (λ ) to the untyped λ-calculus (λ), the lack of recursive types in λ prevents such a back-translation. We propose a general and elegant solution for this problem. The key insight is that it suffices to construct an approximate back-translation. The approximation is only accurate up to a certain number of steps and conservative beyond that, in the sense that the context generated by the back-translation may diverge when the original would not, but not vice versa. Based on this insight, we describe a general technique for proving compiler full-abstraction and demonstrate it on a compiler from λ to λ. The proof uses asymmetric cross-language logical relations and makes innovative use of step-indexing to express the relation between a context and its approximate back-translation. We believe this proof technique can scale to challenging settings and enable simpler, more scalable proofs of compiler full-abstraction. This technical appendix provides the full formalisation and proofs for a companion paper by the same title and authors [Devriese et al., 2016]. ∗Currently working at MPI-SWS, Germany ." @default.
- W2523942962 created "2016-10-07" @default.
- W2523942962 creator A5008329832 @default.
- W2523942962 creator A5011654888 @default.
- W2523942962 creator A5023276491 @default.
- W2523942962 date "2015-11-01" @default.
- W2523942962 modified "2023-09-23" @default.
- W2523942962 title "Fully-abstract compilation by approximate back-translation: Technical appendix" @default.
- W2523942962 cites W2091779700 @default.
- W2523942962 cites W2293692853 @default.
- W2523942962 hasPublicationYear "2015" @default.
- W2523942962 type Work @default.
- W2523942962 sameAs 2523942962 @default.
- W2523942962 citedByCount "0" @default.
- W2523942962 crossrefType "journal-article" @default.
- W2523942962 hasAuthorship W2523942962A5008329832 @default.
- W2523942962 hasAuthorship W2523942962A5011654888 @default.
- W2523942962 hasAuthorship W2523942962A5023276491 @default.
- W2523942962 hasConcept C104317684 @default.
- W2523942962 hasConcept C105580179 @default.
- W2523942962 hasConcept C111472728 @default.
- W2523942962 hasConcept C118615104 @default.
- W2523942962 hasConcept C124304363 @default.
- W2523942962 hasConcept C138885662 @default.
- W2523942962 hasConcept C149364088 @default.
- W2523942962 hasConcept C151730666 @default.
- W2523942962 hasConcept C169590947 @default.
- W2523942962 hasConcept C185592680 @default.
- W2523942962 hasConcept C199360897 @default.
- W2523942962 hasConcept C2779343474 @default.
- W2523942962 hasConcept C2780069185 @default.
- W2523942962 hasConcept C33923547 @default.
- W2523942962 hasConcept C41008148 @default.
- W2523942962 hasConcept C42383842 @default.
- W2523942962 hasConcept C48044578 @default.
- W2523942962 hasConcept C55493867 @default.
- W2523942962 hasConcept C77088390 @default.
- W2523942962 hasConcept C80444323 @default.
- W2523942962 hasConcept C86803240 @default.
- W2523942962 hasConceptScore W2523942962C104317684 @default.
- W2523942962 hasConceptScore W2523942962C105580179 @default.
- W2523942962 hasConceptScore W2523942962C111472728 @default.
- W2523942962 hasConceptScore W2523942962C118615104 @default.
- W2523942962 hasConceptScore W2523942962C124304363 @default.
- W2523942962 hasConceptScore W2523942962C138885662 @default.
- W2523942962 hasConceptScore W2523942962C149364088 @default.
- W2523942962 hasConceptScore W2523942962C151730666 @default.
- W2523942962 hasConceptScore W2523942962C169590947 @default.
- W2523942962 hasConceptScore W2523942962C185592680 @default.
- W2523942962 hasConceptScore W2523942962C199360897 @default.
- W2523942962 hasConceptScore W2523942962C2779343474 @default.
- W2523942962 hasConceptScore W2523942962C2780069185 @default.
- W2523942962 hasConceptScore W2523942962C33923547 @default.
- W2523942962 hasConceptScore W2523942962C41008148 @default.
- W2523942962 hasConceptScore W2523942962C42383842 @default.
- W2523942962 hasConceptScore W2523942962C48044578 @default.
- W2523942962 hasConceptScore W2523942962C55493867 @default.
- W2523942962 hasConceptScore W2523942962C77088390 @default.
- W2523942962 hasConceptScore W2523942962C80444323 @default.
- W2523942962 hasConceptScore W2523942962C86803240 @default.
- W2523942962 hasLocation W25239429621 @default.
- W2523942962 hasOpenAccess W2523942962 @default.
- W2523942962 hasPrimaryLocation W25239429621 @default.
- W2523942962 hasRelatedWork W1434978938 @default.
- W2523942962 hasRelatedWork W1581141438 @default.
- W2523942962 hasRelatedWork W1935001809 @default.
- W2523942962 hasRelatedWork W2039139011 @default.
- W2523942962 hasRelatedWork W2068575019 @default.
- W2523942962 hasRelatedWork W2076084917 @default.
- W2523942962 hasRelatedWork W2080863863 @default.
- W2523942962 hasRelatedWork W2119897009 @default.
- W2523942962 hasRelatedWork W2231264583 @default.
- W2523942962 hasRelatedWork W2231975861 @default.
- W2523942962 hasRelatedWork W2293692853 @default.
- W2523942962 hasRelatedWork W2404181034 @default.
- W2523942962 hasRelatedWork W2427828726 @default.
- W2523942962 hasRelatedWork W2514838807 @default.
- W2523942962 hasRelatedWork W2604853937 @default.
- W2523942962 hasRelatedWork W274788069 @default.
- W2523942962 hasRelatedWork W2752311799 @default.
- W2523942962 hasRelatedWork W2766571030 @default.
- W2523942962 hasRelatedWork W3006404116 @default.
- W2523942962 hasRelatedWork W3212177851 @default.
- W2523942962 isParatext "false" @default.
- W2523942962 isRetracted "false" @default.
- W2523942962 magId "2523942962" @default.
- W2523942962 workType "article" @default.