Matches in SemOpenAlex for { <https://semopenalex.org/work/W2524200052> ?p ?o ?g. }
- W2524200052 endingPage "547" @default.
- W2524200052 startingPage "536" @default.
- W2524200052 abstract "In conventional time series prediction techniques, uncertainty associated with predictions are usually ignored. Probabilistic predictors, on the other hand, can measure the uncertainty in predictions, to provide better supports for decision-making processes. A dynamic probabilistic predictor, named as echo state mean-variance estimation (ESMVE) model, is proposed. The model is constructed with two recurrent neural networks. These networks are trained into a mean estimator and a variance estimator respectively, following the algorithm of echo state networks. ESMVE generate point predictions by estimating the means of a target time series, while it also measures the uncertainty in its predictions by generating variance estimations. Experiments conducted on synthetic data sets show advantages of ESMVE over MVE models constructed with static networks. Effectiveness of ESMVE in real world prediction tasks have also been verified in our case studies." @default.
- W2524200052 created "2016-10-07" @default.
- W2524200052 creator A5036480915 @default.
- W2524200052 creator A5048797071 @default.
- W2524200052 creator A5088094619 @default.
- W2524200052 date "2017-01-01" @default.
- W2524200052 modified "2023-10-15" @default.
- W2524200052 title "Generating probabilistic predictions using mean-variance estimation and echo state network" @default.
- W2524200052 cites W1560021816 @default.
- W2524200052 cites W1964585049 @default.
- W2524200052 cites W1965214782 @default.
- W2524200052 cites W1972966947 @default.
- W2524200052 cites W2026131661 @default.
- W2524200052 cites W2026430219 @default.
- W2524200052 cites W2026475322 @default.
- W2524200052 cites W2031841681 @default.
- W2524200052 cites W2054458966 @default.
- W2524200052 cites W2056386366 @default.
- W2524200052 cites W2058580716 @default.
- W2524200052 cites W2066396564 @default.
- W2524200052 cites W2080106723 @default.
- W2524200052 cites W2083357246 @default.
- W2524200052 cites W2084001690 @default.
- W2524200052 cites W2089866897 @default.
- W2524200052 cites W2090722674 @default.
- W2524200052 cites W2094631910 @default.
- W2524200052 cites W2102996608 @default.
- W2524200052 cites W2118706537 @default.
- W2524200052 cites W2118756059 @default.
- W2524200052 cites W2132477882 @default.
- W2524200052 cites W2136119713 @default.
- W2524200052 cites W2137983211 @default.
- W2524200052 cites W2139073438 @default.
- W2524200052 cites W2144418115 @default.
- W2524200052 cites W2147107577 @default.
- W2524200052 cites W2147755528 @default.
- W2524200052 cites W2154053567 @default.
- W2524200052 cites W2158663270 @default.
- W2524200052 cites W2159682675 @default.
- W2524200052 cites W2166116275 @default.
- W2524200052 cites W2170681242 @default.
- W2524200052 cites W2171523977 @default.
- W2524200052 cites W2171666055 @default.
- W2524200052 cites W2171865010 @default.
- W2524200052 cites W2496780187 @default.
- W2524200052 cites W4239510810 @default.
- W2524200052 cites W637422688 @default.
- W2524200052 doi "https://doi.org/10.1016/j.neucom.2016.09.064" @default.
- W2524200052 hasPublicationYear "2017" @default.
- W2524200052 type Work @default.
- W2524200052 sameAs 2524200052 @default.
- W2524200052 citedByCount "18" @default.
- W2524200052 countsByYear W25242000522017 @default.
- W2524200052 countsByYear W25242000522019 @default.
- W2524200052 countsByYear W25242000522020 @default.
- W2524200052 countsByYear W25242000522021 @default.
- W2524200052 countsByYear W25242000522022 @default.
- W2524200052 crossrefType "journal-article" @default.
- W2524200052 hasAuthorship W2524200052A5036480915 @default.
- W2524200052 hasAuthorship W2524200052A5048797071 @default.
- W2524200052 hasAuthorship W2524200052A5088094619 @default.
- W2524200052 hasConcept C105795698 @default.
- W2524200052 hasConcept C11413529 @default.
- W2524200052 hasConcept C121955636 @default.
- W2524200052 hasConcept C124101348 @default.
- W2524200052 hasConcept C143724316 @default.
- W2524200052 hasConcept C144133560 @default.
- W2524200052 hasConcept C147168706 @default.
- W2524200052 hasConcept C151730666 @default.
- W2524200052 hasConcept C154945302 @default.
- W2524200052 hasConcept C172025690 @default.
- W2524200052 hasConcept C185429906 @default.
- W2524200052 hasConcept C196083921 @default.
- W2524200052 hasConcept C2779426996 @default.
- W2524200052 hasConcept C31258907 @default.
- W2524200052 hasConcept C33923547 @default.
- W2524200052 hasConcept C41008148 @default.
- W2524200052 hasConcept C41426520 @default.
- W2524200052 hasConcept C49937458 @default.
- W2524200052 hasConcept C50644808 @default.
- W2524200052 hasConcept C86803240 @default.
- W2524200052 hasConceptScore W2524200052C105795698 @default.
- W2524200052 hasConceptScore W2524200052C11413529 @default.
- W2524200052 hasConceptScore W2524200052C121955636 @default.
- W2524200052 hasConceptScore W2524200052C124101348 @default.
- W2524200052 hasConceptScore W2524200052C143724316 @default.
- W2524200052 hasConceptScore W2524200052C144133560 @default.
- W2524200052 hasConceptScore W2524200052C147168706 @default.
- W2524200052 hasConceptScore W2524200052C151730666 @default.
- W2524200052 hasConceptScore W2524200052C154945302 @default.
- W2524200052 hasConceptScore W2524200052C172025690 @default.
- W2524200052 hasConceptScore W2524200052C185429906 @default.
- W2524200052 hasConceptScore W2524200052C196083921 @default.
- W2524200052 hasConceptScore W2524200052C2779426996 @default.
- W2524200052 hasConceptScore W2524200052C31258907 @default.
- W2524200052 hasConceptScore W2524200052C33923547 @default.
- W2524200052 hasConceptScore W2524200052C41008148 @default.
- W2524200052 hasConceptScore W2524200052C41426520 @default.