Matches in SemOpenAlex for { <https://semopenalex.org/work/W2524216396> ?p ?o ?g. }
- W2524216396 abstract "This article is a contribution to the spectral theory of so-called eventually positive operators, i.e. operators $T$ which may not be positive but whose powers $T^n$ become positive for large enough $n$. While the spectral theory of such operators is well understood in finite dimensions, the infinite dimensional case has received much less attention in the literature. We show that several sensible notions of eventual positivity can be defined in the infinite dimensional setting, and in contrast to the finite dimensional case those notions do not in general coincide. We then prove a variety of typical Perron--Frobenius type results: we show that the spectral radius of an eventually positive operator is contained in the spectrum; we give sufficient conditions for the spectral radius to be an eigenvalue admitting a positive eigenvector; and we show that the peripheral spectrum of an eventually positive operator is a cyclic set under quite general assumptions. All our results are formulated for operators on Banach lattices, and many of them do not impose any compactness assumptions on the operator." @default.
- W2524216396 created "2016-10-07" @default.
- W2524216396 creator A5012349267 @default.
- W2524216396 date "2016-09-27" @default.
- W2524216396 modified "2023-09-27" @default.
- W2524216396 title "Towards a Perron--Frobenius Theory for Eventually Positive Operators" @default.
- W2524216396 cites W105890311 @default.
- W2524216396 cites W1520850416 @default.
- W2524216396 cites W1531824939 @default.
- W2524216396 cites W1547644141 @default.
- W2524216396 cites W1548797832 @default.
- W2524216396 cites W1550354403 @default.
- W2524216396 cites W1596434689 @default.
- W2524216396 cites W1616958234 @default.
- W2524216396 cites W1971626901 @default.
- W2524216396 cites W1981067681 @default.
- W2524216396 cites W1989423797 @default.
- W2524216396 cites W1990144193 @default.
- W2524216396 cites W2004434307 @default.
- W2524216396 cites W2004621158 @default.
- W2524216396 cites W2005749017 @default.
- W2524216396 cites W2011347541 @default.
- W2524216396 cites W2013139982 @default.
- W2524216396 cites W2041837712 @default.
- W2524216396 cites W2056997428 @default.
- W2524216396 cites W2076977679 @default.
- W2524216396 cites W2086592956 @default.
- W2524216396 cites W2089855590 @default.
- W2524216396 cites W210876736 @default.
- W2524216396 cites W2130351380 @default.
- W2524216396 cites W2133996263 @default.
- W2524216396 cites W2135454081 @default.
- W2524216396 cites W2143043243 @default.
- W2524216396 cites W2145904359 @default.
- W2524216396 cites W2145926793 @default.
- W2524216396 cites W2153030835 @default.
- W2524216396 cites W2240758836 @default.
- W2524216396 cites W2281705245 @default.
- W2524216396 cites W2407899992 @default.
- W2524216396 cites W2963638741 @default.
- W2524216396 cites W3106414158 @default.
- W2524216396 cites W3166565734 @default.
- W2524216396 hasPublicationYear "2016" @default.
- W2524216396 type Work @default.
- W2524216396 sameAs 2524216396 @default.
- W2524216396 citedByCount "0" @default.
- W2524216396 crossrefType "posted-content" @default.
- W2524216396 hasAuthorship W2524216396A5012349267 @default.
- W2524216396 hasConcept C104317684 @default.
- W2524216396 hasConcept C105795698 @default.
- W2524216396 hasConcept C121332964 @default.
- W2524216396 hasConcept C132954091 @default.
- W2524216396 hasConcept C136197465 @default.
- W2524216396 hasConcept C140532419 @default.
- W2524216396 hasConcept C156778621 @default.
- W2524216396 hasConcept C158448853 @default.
- W2524216396 hasConcept C158693339 @default.
- W2524216396 hasConcept C17020691 @default.
- W2524216396 hasConcept C177264268 @default.
- W2524216396 hasConcept C185592680 @default.
- W2524216396 hasConcept C199360897 @default.
- W2524216396 hasConcept C202444582 @default.
- W2524216396 hasConcept C2780297109 @default.
- W2524216396 hasConcept C2985906921 @default.
- W2524216396 hasConcept C33923547 @default.
- W2524216396 hasConcept C41008148 @default.
- W2524216396 hasConcept C43929395 @default.
- W2524216396 hasConcept C44870925 @default.
- W2524216396 hasConcept C55493867 @default.
- W2524216396 hasConcept C62520636 @default.
- W2524216396 hasConcept C62799726 @default.
- W2524216396 hasConcept C86339819 @default.
- W2524216396 hasConcept C98306654 @default.
- W2524216396 hasConceptScore W2524216396C104317684 @default.
- W2524216396 hasConceptScore W2524216396C105795698 @default.
- W2524216396 hasConceptScore W2524216396C121332964 @default.
- W2524216396 hasConceptScore W2524216396C132954091 @default.
- W2524216396 hasConceptScore W2524216396C136197465 @default.
- W2524216396 hasConceptScore W2524216396C140532419 @default.
- W2524216396 hasConceptScore W2524216396C156778621 @default.
- W2524216396 hasConceptScore W2524216396C158448853 @default.
- W2524216396 hasConceptScore W2524216396C158693339 @default.
- W2524216396 hasConceptScore W2524216396C17020691 @default.
- W2524216396 hasConceptScore W2524216396C177264268 @default.
- W2524216396 hasConceptScore W2524216396C185592680 @default.
- W2524216396 hasConceptScore W2524216396C199360897 @default.
- W2524216396 hasConceptScore W2524216396C202444582 @default.
- W2524216396 hasConceptScore W2524216396C2780297109 @default.
- W2524216396 hasConceptScore W2524216396C2985906921 @default.
- W2524216396 hasConceptScore W2524216396C33923547 @default.
- W2524216396 hasConceptScore W2524216396C41008148 @default.
- W2524216396 hasConceptScore W2524216396C43929395 @default.
- W2524216396 hasConceptScore W2524216396C44870925 @default.
- W2524216396 hasConceptScore W2524216396C55493867 @default.
- W2524216396 hasConceptScore W2524216396C62520636 @default.
- W2524216396 hasConceptScore W2524216396C62799726 @default.
- W2524216396 hasConceptScore W2524216396C86339819 @default.
- W2524216396 hasConceptScore W2524216396C98306654 @default.
- W2524216396 hasLocation W25242163961 @default.
- W2524216396 hasOpenAccess W2524216396 @default.