Matches in SemOpenAlex for { <https://semopenalex.org/work/W2524486563> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2524486563 endingPage "54" @default.
- W2524486563 startingPage "54" @default.
- W2524486563 abstract "Consideration of biomechanical aspects during computer assisted orthopaedic surgery (CAOS) is recommendable in order to obtain satisfactory long-term results in total hip arthroplasty (THA). In addition to the absolute value of the hip joint resultant force R the pre- and post-operative orientation of R is an important aspect in the context of the development of a planning module for computer-assisted THA and furthermore for planning of acetabular orientation in periacetabular osteotomy interventions. It is possible to estimate the orientation of hip joint resultant force R for individual patients based on geometrical and anthropometrical parameters. The aim of this study was to examine how far the choice of the mathematical model influences the computational results for the orientation of R in the frontal plane. A further aspect was the comparison of the results with in-vivo data published in the open access OrthoLoad database (www.orthoload.com). Our comparative study included the 2D-models suggested by Pauwels, Blumentritt and Debrunner as well as the 3D-model suggested by Iglic and three patient datasets from the Orthoload database. As computation of R according to each model relies on standardized X-ray imaging, three anterior-posterior (a.p.) digitally reconstructed radiographs (DRRs) were generated from CT data (x21_x21, x8_x8, x12_x12). The orientation of R was expressed in terms of the angle δ for these three patient individual datasets. The angle δ is defined as the angle between the longitudinal axis and R. The computation results were also compared with in vivo telemetric measurement data from the OrthoLoad database. The following data were used to evaluate R in the frontal plane: the highest load peak of the single leg stance (static conditions) of three patients (EBL, HSR, KWR) respectively in the same manner for planar gait (dynamic conditions) of one patient (KWR). The mean value of the orientation of R under static conditions in single leg stance was calculated in order to get a reference value. For the orientation of R under dynamic conditions δ was calculated by using only the highest peak of three cycles (heel strike to toe off) determined in one single patient (among the three patients involved in the measurements under static conditions) of the database. The following values of δ were obtained: Pauwels: 18.26°/20.34°/17.31° (x21_x21/x8_x8/x12_x12) Debrunner: 12.37°/14.30°/12.59° Blumentritt: 5.18°/6.52°/6.14° Iglic: 9.24°/9.01°/9.20° OrthoLoad database (in-vivo): 28.41°/17.08°/13.32°-static (EBL/HSR/KWR) 16.44°-dynamic (KWR) The differences in the computational results appear to depend more on the hip model than on the variability of patient-specific geometrical and anthropometrical parameters. The results obtained with in-vivo measurement data are best approximated by using Pauwels9 model. The mean values of Pauwels (18.64°), Debrunner (13.09°) and Iglic (9.15°) are a little bit more vertically orientated than the mean value of the static in-vivo results (19.60°). Only Pauwels9 model result has a larger angle δ than the in-vivo dynamic result (KWR = 16.44°). By comparing the in-vivo values obtained under dynamic conditions, i.e. gait, (16.44°) with the static in-vivo values of the same patient (13.32°), it could be recognized that the static values are a little bit more vertically orientated than the dynamic result. But both are in the same range as the mathematical models. The computational biomechanical hip models try to approximate the physiological conditions of the hip joint and the OrthoLoad database represents the physiological reconstructed (artificial) hip joint. Therefore, we think our validation approach is useful for a comparison of the biomechanical computation models. In contrast, Blumentritt9s model outcomes have the largest deviation from the other models as well as from the in-vivo data (static and dynamic conditions). Blumentritt used the weight bearing surface as a reference. He defined it being perpendicular to the longitudinal axis [3]. He postulated that a valid and optimal orientation of R is approximately perpendicular on the weight bearing surface respectively parallel to the longitudinal axis. This approach for validation is questionable because the results show that in the three included and analysed DDR9s the orientation is in the mean value 5.95° to the longitudinal axis. It can be concluded that Blumentritt9s model assumptions have to be carefully reviewed due to the deviations from in-vivo measurement data. Among the limitations of our study is the fact that the OrthoLoad database offers only a small number of patient datasets. There is only one dataset for the direct comparison of static (single leg stance) and dynamic (free planar gait) in-vivo measurement data of the same patient included. Furthermore, the individual anatomic geometry data of the patients included in the database are not revealed. Additionally, a source of errors could be an inaccuracy during the data acquisition from the DRR. Further research seems to be recommendable in the context of implementing a biomechanical hip model in a planning module for computer-assisted THA or periacetabular osteotomy interventions, respectively. Sensitivity analyses and parameter studies for different mathematical models using a multi-body-simulation system are objectives of our ongoing work." @default.
- W2524486563 created "2016-10-07" @default.
- W2524486563 creator A5008574692 @default.
- W2524486563 creator A5018762132 @default.
- W2524486563 creator A5043687915 @default.
- W2524486563 creator A5046858092 @default.
- W2524486563 creator A5054007397 @default.
- W2524486563 creator A5059299987 @default.
- W2524486563 creator A5069552364 @default.
- W2524486563 date "2012-10-01" @default.
- W2524486563 modified "2023-09-22" @default.
- W2524486563 title "COMPARISON OF THE ORIENTATION OF THE RESULTANT FORCE OF DIFFERENT BIOMECHANICAL MODELS" @default.
- W2524486563 hasPublicationYear "2012" @default.
- W2524486563 type Work @default.
- W2524486563 sameAs 2524486563 @default.
- W2524486563 citedByCount "0" @default.
- W2524486563 crossrefType "journal-article" @default.
- W2524486563 hasAuthorship W2524486563A5008574692 @default.
- W2524486563 hasAuthorship W2524486563A5018762132 @default.
- W2524486563 hasAuthorship W2524486563A5043687915 @default.
- W2524486563 hasAuthorship W2524486563A5046858092 @default.
- W2524486563 hasAuthorship W2524486563A5054007397 @default.
- W2524486563 hasAuthorship W2524486563A5059299987 @default.
- W2524486563 hasAuthorship W2524486563A5069552364 @default.
- W2524486563 hasConcept C11413529 @default.
- W2524486563 hasConcept C127313418 @default.
- W2524486563 hasConcept C141071460 @default.
- W2524486563 hasConcept C151730666 @default.
- W2524486563 hasConcept C154945302 @default.
- W2524486563 hasConcept C16345878 @default.
- W2524486563 hasConcept C2524010 @default.
- W2524486563 hasConcept C2779343474 @default.
- W2524486563 hasConcept C29694066 @default.
- W2524486563 hasConcept C3019025420 @default.
- W2524486563 hasConcept C31972630 @default.
- W2524486563 hasConcept C33923547 @default.
- W2524486563 hasConcept C41008148 @default.
- W2524486563 hasConcept C45374587 @default.
- W2524486563 hasConcept C71924100 @default.
- W2524486563 hasConceptScore W2524486563C11413529 @default.
- W2524486563 hasConceptScore W2524486563C127313418 @default.
- W2524486563 hasConceptScore W2524486563C141071460 @default.
- W2524486563 hasConceptScore W2524486563C151730666 @default.
- W2524486563 hasConceptScore W2524486563C154945302 @default.
- W2524486563 hasConceptScore W2524486563C16345878 @default.
- W2524486563 hasConceptScore W2524486563C2524010 @default.
- W2524486563 hasConceptScore W2524486563C2779343474 @default.
- W2524486563 hasConceptScore W2524486563C29694066 @default.
- W2524486563 hasConceptScore W2524486563C3019025420 @default.
- W2524486563 hasConceptScore W2524486563C31972630 @default.
- W2524486563 hasConceptScore W2524486563C33923547 @default.
- W2524486563 hasConceptScore W2524486563C41008148 @default.
- W2524486563 hasConceptScore W2524486563C45374587 @default.
- W2524486563 hasConceptScore W2524486563C71924100 @default.
- W2524486563 hasLocation W25244865631 @default.
- W2524486563 hasOpenAccess W2524486563 @default.
- W2524486563 hasPrimaryLocation W25244865631 @default.
- W2524486563 hasRelatedWork W1965755879 @default.
- W2524486563 hasRelatedWork W1989852482 @default.
- W2524486563 hasRelatedWork W2023134077 @default.
- W2524486563 hasRelatedWork W2026493149 @default.
- W2524486563 hasRelatedWork W2033015460 @default.
- W2524486563 hasRelatedWork W2051044243 @default.
- W2524486563 hasRelatedWork W2052430436 @default.
- W2524486563 hasRelatedWork W2062891611 @default.
- W2524486563 hasRelatedWork W2072416877 @default.
- W2524486563 hasRelatedWork W2100194686 @default.
- W2524486563 hasRelatedWork W2139373785 @default.
- W2524486563 hasRelatedWork W2486968661 @default.
- W2524486563 hasRelatedWork W2577451856 @default.
- W2524486563 hasRelatedWork W2779642177 @default.
- W2524486563 hasRelatedWork W2887121480 @default.
- W2524486563 hasRelatedWork W2913212702 @default.
- W2524486563 hasRelatedWork W2969919848 @default.
- W2524486563 hasRelatedWork W3095285496 @default.
- W2524486563 hasRelatedWork W3209286517 @default.
- W2524486563 hasRelatedWork W2611128112 @default.
- W2524486563 isParatext "false" @default.
- W2524486563 isRetracted "false" @default.
- W2524486563 magId "2524486563" @default.
- W2524486563 workType "article" @default.