Matches in SemOpenAlex for { <https://semopenalex.org/work/W2524594584> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2524594584 endingPage "48" @default.
- W2524594584 startingPage "48" @default.
- W2524594584 abstract "Purpose of the article: To examine suitable methods of artificial neural networks and their application in business operations, specifically to the supply chain management. The article discusses construction of an artificial neural networks model that can be used to facilitate optimization of inventory level and thus improve the ordering system and inventory management. For the data analysis from the area of wholesale trade with connecting material is used. Methodology/methods: Methods used in the paper consists especially of artificial neural networks and ANN-based modelling. For data analysis and preprocessing, MS Office Excel software is used. As an instrument for neural network forecasting MathWorks MATLAB Neural Network Tool was used. Deductive quantitative methods for research are also used. Scientific aim: The effort is directed at finding whether the method of prediction using artificial neural networks is suitable as a tool for enhancing the ordering system of an enterprise. The research also focuses on finding what architecture of the artificial neural networks model is the most suitable for subsequent prediction. Findings: Artificial neural networks models can be used for inventory management and lot-sizing problem successfully. A network with the TRAINGDX training function and TANSIG transfer function and 6-8-1 architecture can be considered the most suitable for artificial neural network, as it shows the best results for subsequent prediction. Conclusions: It can be concluded that the created model of artificial neural network can be successfully used for predicting order size and therefore for improving the order cycle of an enterprise. Conclusions resulting from the paper are beneficial for further research." @default.
- W2524594584 created "2016-10-07" @default.
- W2524594584 creator A5008321340 @default.
- W2524594584 date "2016-05-30" @default.
- W2524594584 modified "2023-09-23" @default.
- W2524594584 title "A Suitable Artificial Intelligence Model for Inventory Level Optimization" @default.
- W2524594584 cites W1900820651 @default.
- W2524594584 cites W1977177161 @default.
- W2524594584 cites W1978415596 @default.
- W2524594584 cites W1990616358 @default.
- W2524594584 cites W1992880712 @default.
- W2524594584 cites W2007797237 @default.
- W2524594584 cites W2036233984 @default.
- W2524594584 cites W2060364371 @default.
- W2524594584 cites W2073922099 @default.
- W2524594584 cites W2092550662 @default.
- W2524594584 cites W2098725265 @default.
- W2524594584 cites W2103000999 @default.
- W2524594584 cites W2107857629 @default.
- W2524594584 cites W2140809577 @default.
- W2524594584 cites W2141306919 @default.
- W2524594584 cites W2145614148 @default.
- W2524594584 cites W2146635303 @default.
- W2524594584 cites W2149835216 @default.
- W2524594584 cites W2329008806 @default.
- W2524594584 cites W2333201240 @default.
- W2524594584 doi "https://doi.org/10.13164/trends.2016.25.48" @default.
- W2524594584 hasPublicationYear "2016" @default.
- W2524594584 type Work @default.
- W2524594584 sameAs 2524594584 @default.
- W2524594584 citedByCount "33" @default.
- W2524594584 countsByYear W25245945842018 @default.
- W2524594584 countsByYear W25245945842019 @default.
- W2524594584 countsByYear W25245945842021 @default.
- W2524594584 countsByYear W25245945842022 @default.
- W2524594584 countsByYear W25245945842023 @default.
- W2524594584 crossrefType "journal-article" @default.
- W2524594584 hasAuthorship W2524594584A5008321340 @default.
- W2524594584 hasBestOaLocation W25245945841 @default.
- W2524594584 hasConcept C10551718 @default.
- W2524594584 hasConcept C119857082 @default.
- W2524594584 hasConcept C124101348 @default.
- W2524594584 hasConcept C154945302 @default.
- W2524594584 hasConcept C41008148 @default.
- W2524594584 hasConcept C50644808 @default.
- W2524594584 hasConceptScore W2524594584C10551718 @default.
- W2524594584 hasConceptScore W2524594584C119857082 @default.
- W2524594584 hasConceptScore W2524594584C124101348 @default.
- W2524594584 hasConceptScore W2524594584C154945302 @default.
- W2524594584 hasConceptScore W2524594584C41008148 @default.
- W2524594584 hasConceptScore W2524594584C50644808 @default.
- W2524594584 hasIssue "25" @default.
- W2524594584 hasLocation W25245945841 @default.
- W2524594584 hasLocation W25245945842 @default.
- W2524594584 hasLocation W25245945843 @default.
- W2524594584 hasOpenAccess W2524594584 @default.
- W2524594584 hasPrimaryLocation W25245945841 @default.
- W2524594584 hasRelatedWork W2889453578 @default.
- W2524594584 hasRelatedWork W2961085424 @default.
- W2524594584 hasRelatedWork W3046775127 @default.
- W2524594584 hasRelatedWork W3170094116 @default.
- W2524594584 hasRelatedWork W4285260836 @default.
- W2524594584 hasRelatedWork W4285479813 @default.
- W2524594584 hasRelatedWork W4286629047 @default.
- W2524594584 hasRelatedWork W4306321456 @default.
- W2524594584 hasRelatedWork W4306674287 @default.
- W2524594584 hasRelatedWork W4224009465 @default.
- W2524594584 hasVolume "10" @default.
- W2524594584 isParatext "false" @default.
- W2524594584 isRetracted "false" @default.
- W2524594584 magId "2524594584" @default.
- W2524594584 workType "article" @default.