Matches in SemOpenAlex for { <https://semopenalex.org/work/W2524641560> ?p ?o ?g. }
- W2524641560 endingPage "6140" @default.
- W2524641560 startingPage "6132" @default.
- W2524641560 abstract "ABSTRACT The purple nonsulfur alphaproteobacterium Rhodospirillum rubrum S1 was genetically engineered to synthesize a heteropolymer of mainly 3-hydroxydecanoic acid and 3-hydroxyoctanoic acid [P(3HD- co -3HO)] from CO- and CO 2 -containing artificial synthesis gas (syngas). For this, genes from Pseudomonas putida KT2440 coding for a 3-hydroxyacyl acyl carrier protein (ACP) thioesterase ( phaG ), a medium-chain-length (MCL) fatty acid coenzyme A (CoA) ligase ( PP_0763 ), and an MCL polyhydroxyalkanoate (PHA) synthase ( phaC1 ) were cloned and expressed under the control of the CO-inducible promoter P cooF from R. rubrum S1 in a PHA-negative mutant of R. rubrum . P(3HD- co -3HO) was accumulated to up to 7.1% (wt/wt) of the cell dry weight by a recombinant mutant strain utilizing exclusively the provided gaseous feedstock syngas. In addition to an increased synthesis of these medium-chain-length PHAs (PHA MCL ), enhanced gene expression through the P cooF promoter also led to an increased molar fraction of 3HO in the synthesized copolymer compared with the P lac promoter, which regulated expression on the original vector. The recombinant strains were able to partially degrade the polymer, and the deletion of phaZ2 , which codes for a PHA depolymerase most likely involved in intracellular PHA degradation, did not reduce mobilization of the accumulated polymer significantly. However, an amino acid exchange in the active site of PhaZ2 led to a slight increase in PHA MCL accumulation. The accumulated polymer was isolated; it exhibited a molecular mass of 124.3 kDa and a melting point of 49.6°C. With the metabolically engineered strains presented in this proof-of-principle study, we demonstrated the synthesis of elastomeric second-generation biopolymers from renewable feedstocks not competing with human nutrition. IMPORTANCE Polyhydroxyalkanoates (PHAs) are natural biodegradable polymers (biopolymers) showing properties similar to those of commonly produced petroleum-based nondegradable polymers. The utilization of cheap substrates for the microbial production of PHAs is crucial to lower production costs. Feedstock not competing with human nutrition is highly favorable. Syngas, a mixture of carbon monoxide, carbon dioxide, and hydrogen, can be obtained by pyrolysis of organic waste and can be utilized for PHA synthesis by several kinds of bacteria. Up to now, the biosynthesis of PHAs from syngas has been limited to short-chain-length PHAs, which results in a stiff and brittle material. In this study, the syngas-utilizing bacterium Rhodospirillum rubrum was genetically modified to synthesize a polymer which consisted of medium-chain-length constituents, resulting in a rubber-like material. This study reports the establishment of a microbial synthesis of these so-called medium-chain-length PHAs from syngas and therefore potentially extends the applications of syngas-derived PHAs." @default.
- W2524641560 created "2016-10-07" @default.
- W2524641560 creator A5014931226 @default.
- W2524641560 creator A5021053913 @default.
- W2524641560 creator A5027303518 @default.
- W2524641560 creator A5043078189 @default.
- W2524641560 creator A5044318565 @default.
- W2524641560 creator A5076768521 @default.
- W2524641560 creator A5087464897 @default.
- W2524641560 creator A5089711637 @default.
- W2524641560 date "2016-10-15" @default.
- W2524641560 modified "2023-09-25" @default.
- W2524641560 title "Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum" @default.
- W2524641560 cites W1419811003 @default.
- W2524641560 cites W1495776608 @default.
- W2524641560 cites W1517697544 @default.
- W2524641560 cites W1528351569 @default.
- W2524641560 cites W1541254234 @default.
- W2524641560 cites W1661459950 @default.
- W2524641560 cites W1699096982 @default.
- W2524641560 cites W1760672256 @default.
- W2524641560 cites W1923427359 @default.
- W2524641560 cites W1932955080 @default.
- W2524641560 cites W1980385935 @default.
- W2524641560 cites W1993007967 @default.
- W2524641560 cites W1993105877 @default.
- W2524641560 cites W1995142168 @default.
- W2524641560 cites W2000008571 @default.
- W2524641560 cites W2000851959 @default.
- W2524641560 cites W2009220402 @default.
- W2524641560 cites W2016467705 @default.
- W2524641560 cites W2018289835 @default.
- W2524641560 cites W2019121099 @default.
- W2524641560 cites W2020757029 @default.
- W2524641560 cites W2022132371 @default.
- W2524641560 cites W2023602968 @default.
- W2524641560 cites W2024835614 @default.
- W2524641560 cites W2026010604 @default.
- W2524641560 cites W2027229485 @default.
- W2524641560 cites W2030945179 @default.
- W2524641560 cites W2036822952 @default.
- W2524641560 cites W2036917159 @default.
- W2524641560 cites W2040502702 @default.
- W2524641560 cites W2044143765 @default.
- W2524641560 cites W2051121620 @default.
- W2524641560 cites W2060036653 @default.
- W2524641560 cites W2060514967 @default.
- W2524641560 cites W2066330231 @default.
- W2524641560 cites W2070424471 @default.
- W2524641560 cites W2088914103 @default.
- W2524641560 cites W2089048992 @default.
- W2524641560 cites W2100837269 @default.
- W2524641560 cites W2112426955 @default.
- W2524641560 cites W2113849438 @default.
- W2524641560 cites W2114491487 @default.
- W2524641560 cites W2115380917 @default.
- W2524641560 cites W2117282430 @default.
- W2524641560 cites W2119181590 @default.
- W2524641560 cites W2119908734 @default.
- W2524641560 cites W2128635872 @default.
- W2524641560 cites W2132417094 @default.
- W2524641560 cites W2154545651 @default.
- W2524641560 cites W2158714788 @default.
- W2524641560 cites W2163808264 @default.
- W2524641560 cites W2304578977 @default.
- W2524641560 cites W2321207353 @default.
- W2524641560 cites W2328134666 @default.
- W2524641560 cites W4293247451 @default.
- W2524641560 doi "https://doi.org/10.1128/aem.01744-16" @default.
- W2524641560 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5068169" @default.
- W2524641560 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27520812" @default.
- W2524641560 hasPublicationYear "2016" @default.
- W2524641560 type Work @default.
- W2524641560 sameAs 2524641560 @default.
- W2524641560 citedByCount "42" @default.
- W2524641560 countsByYear W25246415602017 @default.
- W2524641560 countsByYear W25246415602018 @default.
- W2524641560 countsByYear W25246415602019 @default.
- W2524641560 countsByYear W25246415602020 @default.
- W2524641560 countsByYear W25246415602021 @default.
- W2524641560 countsByYear W25246415602022 @default.
- W2524641560 countsByYear W25246415602023 @default.
- W2524641560 crossrefType "journal-article" @default.
- W2524641560 hasAuthorship W2524641560A5014931226 @default.
- W2524641560 hasAuthorship W2524641560A5021053913 @default.
- W2524641560 hasAuthorship W2524641560A5027303518 @default.
- W2524641560 hasAuthorship W2524641560A5043078189 @default.
- W2524641560 hasAuthorship W2524641560A5044318565 @default.
- W2524641560 hasAuthorship W2524641560A5076768521 @default.
- W2524641560 hasAuthorship W2524641560A5087464897 @default.
- W2524641560 hasAuthorship W2524641560A5089711637 @default.
- W2524641560 hasBestOaLocation W25246415601 @default.
- W2524641560 hasConcept C104317684 @default.
- W2524641560 hasConcept C161790260 @default.
- W2524641560 hasConcept C181199279 @default.
- W2524641560 hasConcept C185592680 @default.
- W2524641560 hasConcept C194439259 @default.
- W2524641560 hasConcept C2777082638 @default.