Matches in SemOpenAlex for { <https://semopenalex.org/work/W2524863835> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2524863835 endingPage "132" @default.
- W2524863835 startingPage "114" @default.
- W2524863835 abstract "Most of the well-known supervised dimensionality reduction methods assume unimodal or Gaussian likelihoods, which may not be appropriate in the real life applications. In this manuscript, we introduce a novel supervised dimensionality reduction approach, moments discriminant analysis, which models linear relationships between the high-dimensional input space and a low-dimensional space by maximizing the discrimination between second order raw moments of different classes to improve the generalization capability of a classifier. Unlike the state-of-the-art methods, moments discriminant analysis is intended to accommodate data distributions that may be multimodal and non-Gaussian. Initially, experiments using synthetic random data (generated from different probability distributions) are performed to prove the efficiency of the proposed method for multimodal and non-Gaussian data with the help of five separability measures. Also, extensive experimental results on UCI machine learning repository and image retrieval on WANG and MIT (Oliva and Torralba) databases are carried out in order to exhibit the effectiveness of moments discriminant analysis over the state-of-the-art methods." @default.
- W2524863835 created "2016-10-07" @default.
- W2524863835 creator A5025656702 @default.
- W2524863835 creator A5072098966 @default.
- W2524863835 date "2017-05-01" @default.
- W2524863835 modified "2023-09-24" @default.
- W2524863835 title "Moments discriminant analysis for supervised dimensionality reduction" @default.
- W2524863835 cites W1146913598 @default.
- W2524863835 cites W1566135517 @default.
- W2524863835 cites W1915044204 @default.
- W2524863835 cites W1972490990 @default.
- W2524863835 cites W1972766437 @default.
- W2524863835 cites W197859098 @default.
- W2524863835 cites W1986784494 @default.
- W2524863835 cites W1987913709 @default.
- W2524863835 cites W1994141615 @default.
- W2524863835 cites W2007312210 @default.
- W2524863835 cites W2019045907 @default.
- W2524863835 cites W2034481920 @default.
- W2524863835 cites W2037913685 @default.
- W2524863835 cites W2055427303 @default.
- W2524863835 cites W2057105140 @default.
- W2524863835 cites W2067752346 @default.
- W2524863835 cites W2081648593 @default.
- W2524863835 cites W2090540501 @default.
- W2524863835 cites W2105055468 @default.
- W2524863835 cites W2105610271 @default.
- W2524863835 cites W2123180320 @default.
- W2524863835 cites W2124161253 @default.
- W2524863835 cites W2130675919 @default.
- W2524863835 cites W2137736727 @default.
- W2524863835 cites W2150692003 @default.
- W2524863835 cites W2156571432 @default.
- W2524863835 cites W2158001550 @default.
- W2524863835 cites W2158019369 @default.
- W2524863835 cites W2166693468 @default.
- W2524863835 cites W2173487683 @default.
- W2524863835 cites W2188408756 @default.
- W2524863835 cites W2202183074 @default.
- W2524863835 cites W3148981562 @default.
- W2524863835 doi "https://doi.org/10.1016/j.neucom.2016.09.048" @default.
- W2524863835 hasPublicationYear "2017" @default.
- W2524863835 type Work @default.
- W2524863835 sameAs 2524863835 @default.
- W2524863835 citedByCount "3" @default.
- W2524863835 countsByYear W25248638352017 @default.
- W2524863835 countsByYear W25248638352018 @default.
- W2524863835 countsByYear W25248638352022 @default.
- W2524863835 crossrefType "journal-article" @default.
- W2524863835 hasAuthorship W2524863835A5025656702 @default.
- W2524863835 hasAuthorship W2524863835A5072098966 @default.
- W2524863835 hasConcept C104500394 @default.
- W2524863835 hasConcept C105795698 @default.
- W2524863835 hasConcept C111335779 @default.
- W2524863835 hasConcept C119857082 @default.
- W2524863835 hasConcept C153180895 @default.
- W2524863835 hasConcept C154945302 @default.
- W2524863835 hasConcept C2524010 @default.
- W2524863835 hasConcept C27438332 @default.
- W2524863835 hasConcept C33923547 @default.
- W2524863835 hasConcept C41008148 @default.
- W2524863835 hasConcept C58596280 @default.
- W2524863835 hasConcept C69738355 @default.
- W2524863835 hasConcept C70518039 @default.
- W2524863835 hasConcept C78397625 @default.
- W2524863835 hasConceptScore W2524863835C104500394 @default.
- W2524863835 hasConceptScore W2524863835C105795698 @default.
- W2524863835 hasConceptScore W2524863835C111335779 @default.
- W2524863835 hasConceptScore W2524863835C119857082 @default.
- W2524863835 hasConceptScore W2524863835C153180895 @default.
- W2524863835 hasConceptScore W2524863835C154945302 @default.
- W2524863835 hasConceptScore W2524863835C2524010 @default.
- W2524863835 hasConceptScore W2524863835C27438332 @default.
- W2524863835 hasConceptScore W2524863835C33923547 @default.
- W2524863835 hasConceptScore W2524863835C41008148 @default.
- W2524863835 hasConceptScore W2524863835C58596280 @default.
- W2524863835 hasConceptScore W2524863835C69738355 @default.
- W2524863835 hasConceptScore W2524863835C70518039 @default.
- W2524863835 hasConceptScore W2524863835C78397625 @default.
- W2524863835 hasLocation W25248638351 @default.
- W2524863835 hasOpenAccess W2524863835 @default.
- W2524863835 hasPrimaryLocation W25248638351 @default.
- W2524863835 hasRelatedWork W1559186143 @default.
- W2524863835 hasRelatedWork W1562318760 @default.
- W2524863835 hasRelatedWork W1979102611 @default.
- W2524863835 hasRelatedWork W1984671715 @default.
- W2524863835 hasRelatedWork W2052589448 @default.
- W2524863835 hasRelatedWork W2057055871 @default.
- W2524863835 hasRelatedWork W2167601730 @default.
- W2524863835 hasRelatedWork W2169311637 @default.
- W2524863835 hasRelatedWork W2348847683 @default.
- W2524863835 hasRelatedWork W2980846366 @default.
- W2524863835 hasVolume "237" @default.
- W2524863835 isParatext "false" @default.
- W2524863835 isRetracted "false" @default.
- W2524863835 magId "2524863835" @default.
- W2524863835 workType "article" @default.