Matches in SemOpenAlex for { <https://semopenalex.org/work/W2524961372> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2524961372 endingPage "223" @default.
- W2524961372 startingPage "214" @default.
- W2524961372 abstract "Kernelized learning algorithms have seen a steady growth in popularity during the last decades. The procedure to estimate the performances of these kernels in real applications is typical computationally demanding due to the process of hyper-parameter selection. This is especially true for graph kernels, which are computationally quite expensive. In this paper, we study an approach that substitutes the commonly adopted procedure for kernel hyper-parameter selection by a multiple kernel learning procedure that learns a linear combination of kernel matrices obtained by the same kernel with different values for the hyper-parameters. Empirical results on real-world graph datasets show that the proposed methodology is faster than the baseline method when the number of parameter configurations is large, while always maintaining comparable and in some cases superior performances." @default.
- W2524961372 created "2016-10-07" @default.
- W2524961372 creator A5057095171 @default.
- W2524961372 creator A5064873591 @default.
- W2524961372 creator A5088959189 @default.
- W2524961372 date "2016-01-01" @default.
- W2524961372 modified "2023-10-13" @default.
- W2524961372 title "Hyper-Parameter Tuning for Graph Kernels via Multiple Kernel Learning" @default.
- W2524961372 cites W1510073064 @default.
- W2524961372 cites W1546013181 @default.
- W2524961372 cites W1976683819 @default.
- W2524961372 cites W2008255964 @default.
- W2524961372 cites W2060166505 @default.
- W2524961372 cites W2092750499 @default.
- W2524961372 cites W2232548815 @default.
- W2524961372 cites W2245793494 @default.
- W2524961372 cites W2407839853 @default.
- W2524961372 cites W3121912810 @default.
- W2524961372 cites W3144386677 @default.
- W2524961372 cites W4376848346 @default.
- W2524961372 doi "https://doi.org/10.1007/978-3-319-46672-9_25" @default.
- W2524961372 hasPublicationYear "2016" @default.
- W2524961372 type Work @default.
- W2524961372 sameAs 2524961372 @default.
- W2524961372 citedByCount "6" @default.
- W2524961372 countsByYear W25249613722017 @default.
- W2524961372 countsByYear W25249613722018 @default.
- W2524961372 countsByYear W25249613722020 @default.
- W2524961372 countsByYear W25249613722021 @default.
- W2524961372 countsByYear W25249613722023 @default.
- W2524961372 crossrefType "book-chapter" @default.
- W2524961372 hasAuthorship W2524961372A5057095171 @default.
- W2524961372 hasAuthorship W2524961372A5064873591 @default.
- W2524961372 hasAuthorship W2524961372A5088959189 @default.
- W2524961372 hasConcept C100595998 @default.
- W2524961372 hasConcept C11413529 @default.
- W2524961372 hasConcept C118615104 @default.
- W2524961372 hasConcept C119857082 @default.
- W2524961372 hasConcept C122280245 @default.
- W2524961372 hasConcept C12267149 @default.
- W2524961372 hasConcept C132525143 @default.
- W2524961372 hasConcept C134517425 @default.
- W2524961372 hasConcept C154945302 @default.
- W2524961372 hasConcept C160446489 @default.
- W2524961372 hasConcept C195699287 @default.
- W2524961372 hasConcept C33923547 @default.
- W2524961372 hasConcept C41008148 @default.
- W2524961372 hasConcept C74193536 @default.
- W2524961372 hasConcept C80444323 @default.
- W2524961372 hasConcept C81917197 @default.
- W2524961372 hasConceptScore W2524961372C100595998 @default.
- W2524961372 hasConceptScore W2524961372C11413529 @default.
- W2524961372 hasConceptScore W2524961372C118615104 @default.
- W2524961372 hasConceptScore W2524961372C119857082 @default.
- W2524961372 hasConceptScore W2524961372C122280245 @default.
- W2524961372 hasConceptScore W2524961372C12267149 @default.
- W2524961372 hasConceptScore W2524961372C132525143 @default.
- W2524961372 hasConceptScore W2524961372C134517425 @default.
- W2524961372 hasConceptScore W2524961372C154945302 @default.
- W2524961372 hasConceptScore W2524961372C160446489 @default.
- W2524961372 hasConceptScore W2524961372C195699287 @default.
- W2524961372 hasConceptScore W2524961372C33923547 @default.
- W2524961372 hasConceptScore W2524961372C41008148 @default.
- W2524961372 hasConceptScore W2524961372C74193536 @default.
- W2524961372 hasConceptScore W2524961372C80444323 @default.
- W2524961372 hasConceptScore W2524961372C81917197 @default.
- W2524961372 hasLocation W25249613721 @default.
- W2524961372 hasOpenAccess W2524961372 @default.
- W2524961372 hasPrimaryLocation W25249613721 @default.
- W2524961372 hasRelatedWork W1983263273 @default.
- W2524961372 hasRelatedWork W2179275589 @default.
- W2524961372 hasRelatedWork W2351222813 @default.
- W2524961372 hasRelatedWork W2371165991 @default.
- W2524961372 hasRelatedWork W2574115973 @default.
- W2524961372 hasRelatedWork W2955904137 @default.
- W2524961372 hasRelatedWork W3081470858 @default.
- W2524961372 hasRelatedWork W3100948281 @default.
- W2524961372 hasRelatedWork W4311138679 @default.
- W2524961372 hasRelatedWork W2399228324 @default.
- W2524961372 isParatext "false" @default.
- W2524961372 isRetracted "false" @default.
- W2524961372 magId "2524961372" @default.
- W2524961372 workType "book-chapter" @default.