Matches in SemOpenAlex for { <https://semopenalex.org/work/W2525009094> ?p ?o ?g. }
- W2525009094 endingPage "609" @default.
- W2525009094 startingPage "599" @default.
- W2525009094 abstract "Transesophageal echocardiography (TEE) is routinely used to provide important qualitative and quantitative information regarding mitral regurgitation. Contemporary planning of surgical mitral valve repair, however, still relies heavily upon subjective predictions based on experience and intuition. While patient-specific mitral valve modeling holds promise, its effectiveness is limited by assumptions that must be made about constitutive material properties. In this paper, we propose and develop a semi-automated framework that combines machine learning image analysis with geometrical and biomechanical models to build a patient-specific mitral valve representation that incorporates image-derived material properties. We use our computational framework, along with 3D TEE images of the open and closed mitral valve, to estimate values for chordae rest lengths and leaflet material properties. These parameters are initialized using generic values and optimized to match the visualized deformation of mitral valve geometry between the open and closed states. Optimization is achieved by minimizing the summed Euclidean distances between the estimated and image-derived closed mitral valve geometry. The spatially varying material parameters of the mitral leaflets are estimated using an extended Kalman filter to take advantage of the temporal information available from TEE. This semi-automated and patient-specific modeling framework was tested on 15 TEE image acquisitions from 14 patients. Simulated mitral valve closures yielded average errors (measured by point-to-point Euclidean distances) of 1.86 ± 1.24 mm. The estimated material parameters suggest that the anterior leaflet is stiffer than the posterior leaflet and that these properties vary between individuals, consistent with experimental observations described in the literature." @default.
- W2525009094 created "2016-10-07" @default.
- W2525009094 creator A5012751147 @default.
- W2525009094 creator A5025758534 @default.
- W2525009094 creator A5034707713 @default.
- W2525009094 creator A5038839833 @default.
- W2525009094 creator A5046673670 @default.
- W2525009094 creator A5065551651 @default.
- W2525009094 creator A5067611389 @default.
- W2525009094 creator A5076142807 @default.
- W2525009094 creator A5076429636 @default.
- W2525009094 creator A5077640348 @default.
- W2525009094 creator A5080475090 @default.
- W2525009094 creator A5081217615 @default.
- W2525009094 date "2017-01-01" @default.
- W2525009094 modified "2023-09-24" @default.
- W2525009094 title "Towards patient-specific modeling of mitral valve repair: 3D transesophageal echocardiography-derived parameter estimation" @default.
- W2525009094 cites W108487715 @default.
- W2525009094 cites W1577228847 @default.
- W2525009094 cites W1597814688 @default.
- W2525009094 cites W1978725559 @default.
- W2525009094 cites W1987196080 @default.
- W2525009094 cites W2015846782 @default.
- W2525009094 cites W2016889318 @default.
- W2525009094 cites W2030634957 @default.
- W2525009094 cites W2035734643 @default.
- W2525009094 cites W2067758501 @default.
- W2525009094 cites W2085261163 @default.
- W2525009094 cites W2086962079 @default.
- W2525009094 cites W2101689475 @default.
- W2525009094 cites W2103626774 @default.
- W2525009094 cites W2105683744 @default.
- W2525009094 cites W2107666838 @default.
- W2525009094 cites W2110399601 @default.
- W2525009094 cites W2114013702 @default.
- W2525009094 cites W2119033078 @default.
- W2525009094 cites W2120135586 @default.
- W2525009094 cites W2136569422 @default.
- W2525009094 cites W2157893267 @default.
- W2525009094 cites W2169052697 @default.
- W2525009094 cites W2172458865 @default.
- W2525009094 cites W2310782429 @default.
- W2525009094 doi "https://doi.org/10.1016/j.media.2016.09.006" @default.
- W2525009094 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27718462" @default.
- W2525009094 hasPublicationYear "2017" @default.
- W2525009094 type Work @default.
- W2525009094 sameAs 2525009094 @default.
- W2525009094 citedByCount "19" @default.
- W2525009094 countsByYear W25250090942017 @default.
- W2525009094 countsByYear W25250090942018 @default.
- W2525009094 countsByYear W25250090942019 @default.
- W2525009094 countsByYear W25250090942020 @default.
- W2525009094 countsByYear W25250090942021 @default.
- W2525009094 countsByYear W25250090942022 @default.
- W2525009094 crossrefType "journal-article" @default.
- W2525009094 hasAuthorship W2525009094A5012751147 @default.
- W2525009094 hasAuthorship W2525009094A5025758534 @default.
- W2525009094 hasAuthorship W2525009094A5034707713 @default.
- W2525009094 hasAuthorship W2525009094A5038839833 @default.
- W2525009094 hasAuthorship W2525009094A5046673670 @default.
- W2525009094 hasAuthorship W2525009094A5065551651 @default.
- W2525009094 hasAuthorship W2525009094A5067611389 @default.
- W2525009094 hasAuthorship W2525009094A5076142807 @default.
- W2525009094 hasAuthorship W2525009094A5076429636 @default.
- W2525009094 hasAuthorship W2525009094A5077640348 @default.
- W2525009094 hasAuthorship W2525009094A5080475090 @default.
- W2525009094 hasAuthorship W2525009094A5081217615 @default.
- W2525009094 hasConcept C136229726 @default.
- W2525009094 hasConcept C154945302 @default.
- W2525009094 hasConcept C164705383 @default.
- W2525009094 hasConcept C2777543888 @default.
- W2525009094 hasConcept C2780679668 @default.
- W2525009094 hasConcept C2993373945 @default.
- W2525009094 hasConcept C31972630 @default.
- W2525009094 hasConcept C33923547 @default.
- W2525009094 hasConcept C41008148 @default.
- W2525009094 hasConcept C71924100 @default.
- W2525009094 hasConceptScore W2525009094C136229726 @default.
- W2525009094 hasConceptScore W2525009094C154945302 @default.
- W2525009094 hasConceptScore W2525009094C164705383 @default.
- W2525009094 hasConceptScore W2525009094C2777543888 @default.
- W2525009094 hasConceptScore W2525009094C2780679668 @default.
- W2525009094 hasConceptScore W2525009094C2993373945 @default.
- W2525009094 hasConceptScore W2525009094C31972630 @default.
- W2525009094 hasConceptScore W2525009094C33923547 @default.
- W2525009094 hasConceptScore W2525009094C41008148 @default.
- W2525009094 hasConceptScore W2525009094C71924100 @default.
- W2525009094 hasLocation W25250090941 @default.
- W2525009094 hasLocation W25250090942 @default.
- W2525009094 hasOpenAccess W2525009094 @default.
- W2525009094 hasPrimaryLocation W25250090941 @default.
- W2525009094 hasRelatedWork W1153118014 @default.
- W2525009094 hasRelatedWork W1798779352 @default.
- W2525009094 hasRelatedWork W2022892057 @default.
- W2525009094 hasRelatedWork W2098512365 @default.
- W2525009094 hasRelatedWork W2412815624 @default.
- W2525009094 hasRelatedWork W2774287209 @default.
- W2525009094 hasRelatedWork W2991568274 @default.