Matches in SemOpenAlex for { <https://semopenalex.org/work/W2525614189> ?p ?o ?g. }
- W2525614189 endingPage "434" @default.
- W2525614189 startingPage "422" @default.
- W2525614189 abstract "Abstract This study proposes a multiple sources and multiple measures based traffic flow prediction algorithm using the chaos theory and support vector regression method. In particular, first, the chaotic characteristics of traffic flow associated with the speed, occupancy, and flow are identified using the maximum Lyapunov exponent. Then, the phase space of multiple measures chaotic time series are reconstructed based on the phase space reconstruction theory and fused into a same multi-dimensional phase space using the Bayesian estimation theory. In addition, the support vector regression (SVR) model is designed to predict the traffic flow. Numerical experiments are performed using the data from multiple sources. The results show that, compared with the single measure, the proposed method has better performance for the short-term traffic flow prediction in terms of the accuracy and timeliness." @default.
- W2525614189 created "2016-10-07" @default.
- W2525614189 creator A5020177474 @default.
- W2525614189 creator A5046385198 @default.
- W2525614189 creator A5051061851 @default.
- W2525614189 creator A5066393809 @default.
- W2525614189 creator A5085264222 @default.
- W2525614189 date "2017-01-01" @default.
- W2525614189 modified "2023-10-10" @default.
- W2525614189 title "Multiple sources and multiple measures based traffic flow prediction using the chaos theory and support vector regression method" @default.
- W2525614189 cites W1801270228 @default.
- W2525614189 cites W1958929917 @default.
- W2525614189 cites W1964725609 @default.
- W2525614189 cites W1970616699 @default.
- W2525614189 cites W1983754074 @default.
- W2525614189 cites W1987916558 @default.
- W2525614189 cites W1995727034 @default.
- W2525614189 cites W2004748937 @default.
- W2525614189 cites W2008790204 @default.
- W2525614189 cites W2014784329 @default.
- W2525614189 cites W2020292925 @default.
- W2525614189 cites W2021153764 @default.
- W2525614189 cites W2038185705 @default.
- W2525614189 cites W2047286795 @default.
- W2525614189 cites W2048680705 @default.
- W2525614189 cites W2057918527 @default.
- W2525614189 cites W2059128538 @default.
- W2525614189 cites W2062177351 @default.
- W2525614189 cites W2069929199 @default.
- W2525614189 cites W2073795924 @default.
- W2525614189 cites W2073817142 @default.
- W2525614189 cites W2085793407 @default.
- W2525614189 cites W2124428761 @default.
- W2525614189 cites W2131767615 @default.
- W2525614189 cites W2148629608 @default.
- W2525614189 cites W2150010190 @default.
- W2525614189 cites W2152254020 @default.
- W2525614189 cites W2249790616 @default.
- W2525614189 cites W2281039876 @default.
- W2525614189 cites W2344791400 @default.
- W2525614189 cites W2345758686 @default.
- W2525614189 cites W2387444868 @default.
- W2525614189 cites W2427573636 @default.
- W2525614189 doi "https://doi.org/10.1016/j.physa.2016.09.041" @default.
- W2525614189 hasPublicationYear "2017" @default.
- W2525614189 type Work @default.
- W2525614189 sameAs 2525614189 @default.
- W2525614189 citedByCount "95" @default.
- W2525614189 countsByYear W25256141892017 @default.
- W2525614189 countsByYear W25256141892018 @default.
- W2525614189 countsByYear W25256141892019 @default.
- W2525614189 countsByYear W25256141892020 @default.
- W2525614189 countsByYear W25256141892021 @default.
- W2525614189 countsByYear W25256141892022 @default.
- W2525614189 countsByYear W25256141892023 @default.
- W2525614189 crossrefType "journal-article" @default.
- W2525614189 hasAuthorship W2525614189A5020177474 @default.
- W2525614189 hasAuthorship W2525614189A5046385198 @default.
- W2525614189 hasAuthorship W2525614189A5051061851 @default.
- W2525614189 hasAuthorship W2525614189A5066393809 @default.
- W2525614189 hasAuthorship W2525614189A5085264222 @default.
- W2525614189 hasConcept C105795698 @default.
- W2525614189 hasConcept C119857082 @default.
- W2525614189 hasConcept C12267149 @default.
- W2525614189 hasConcept C124101348 @default.
- W2525614189 hasConcept C152877465 @default.
- W2525614189 hasConcept C154945302 @default.
- W2525614189 hasConcept C207512268 @default.
- W2525614189 hasConcept C2524010 @default.
- W2525614189 hasConcept C2777052490 @default.
- W2525614189 hasConcept C2779374083 @default.
- W2525614189 hasConcept C33923547 @default.
- W2525614189 hasConcept C38349280 @default.
- W2525614189 hasConcept C38652104 @default.
- W2525614189 hasConcept C41008148 @default.
- W2525614189 hasConcept C83546350 @default.
- W2525614189 hasConcept C92866567 @default.
- W2525614189 hasConceptScore W2525614189C105795698 @default.
- W2525614189 hasConceptScore W2525614189C119857082 @default.
- W2525614189 hasConceptScore W2525614189C12267149 @default.
- W2525614189 hasConceptScore W2525614189C124101348 @default.
- W2525614189 hasConceptScore W2525614189C152877465 @default.
- W2525614189 hasConceptScore W2525614189C154945302 @default.
- W2525614189 hasConceptScore W2525614189C207512268 @default.
- W2525614189 hasConceptScore W2525614189C2524010 @default.
- W2525614189 hasConceptScore W2525614189C2777052490 @default.
- W2525614189 hasConceptScore W2525614189C2779374083 @default.
- W2525614189 hasConceptScore W2525614189C33923547 @default.
- W2525614189 hasConceptScore W2525614189C38349280 @default.
- W2525614189 hasConceptScore W2525614189C38652104 @default.
- W2525614189 hasConceptScore W2525614189C41008148 @default.
- W2525614189 hasConceptScore W2525614189C83546350 @default.
- W2525614189 hasConceptScore W2525614189C92866567 @default.
- W2525614189 hasFunder F4320321001 @default.
- W2525614189 hasLocation W25256141891 @default.
- W2525614189 hasOpenAccess W2525614189 @default.
- W2525614189 hasPrimaryLocation W25256141891 @default.
- W2525614189 hasRelatedWork W1965681228 @default.