Matches in SemOpenAlex for { <https://semopenalex.org/work/W2525979153> ?p ?o ?g. }
- W2525979153 endingPage "2657" @default.
- W2525979153 startingPage "2649" @default.
- W2525979153 abstract "ConspectusIt is an exciting time for exploring the synergism between the chemical and dimensional properties of redox nanomaterials for addressing the manifold performance demands faced by energy storage technologies. The call for widespread adoption of alternative energy sources requires the combination of emerging chemical concepts with redesigned battery formats. Our groups are interested in the development and implementation of a new strategy for nonaqueous flow batteries (NRFBs) for grid energy storage. Our motivation is to solve major challenges in NRFBs, such as the lack of membranes that simultaneously allow fast ion transport while minimizing redox active species crossover between anolyte (negative electrolyte) and catholyte (positive electrolyte) compartments. This pervasive crossover leads to deleterious capacity fade and materials underutilization.In this Account, we highlight redox active polymers (RAPs) and related polymer colloids as soluble nanoscopic energy storing units that enable the simple but powerful size-exclusion concept for NRFBs. Crossover of the redox component is suppressed by matching high molecular weight RAPs with simple and inexpensive nanoporous commercial separators. In contrast to the vast literature on the redox chemistry of electrode-confined polymer films, studies on the electrochemistry of solubilized RAPs are incipient. This is due in part to challenges in finding suitable solvents that enable systematic studies on high polymers. Here, viologen-, ferrocene- and nitrostyrene-based polymers in various formats exhibit properties that make amenable their electrochemical exploration as solution-phase redox couples.A main finding is that RAP solutions store energy efficiently and reversibly while offering chemical modularity and size versatility. Beyond the practicality toward their use in NRFBs, the fundamental electrochemistry exhibited by RAPs is fascinating, showing clear distinctions in behavior from that of small molecules. Whereas RAPs conveniently translate the redox properties of small molecules into a nanostructure, they give rise to charge transfer mechanisms and electrolyte interactions that elicit distinct electrochemical responses. To understand how the electrochemical characteristics of RAPs depend on molecular features, including redox moiety, macromolecular size, and backbone structure, a range of techniques has been employed by our groups, including voltammetry at macro- and microelectrodes, rotating disk electrode voltammetry, bulk electrolysis, and scanning electrochemical microscopy. RAPs rely on three-dimensional charge transfer within their inner bulk, which is an efficient process and allows quantitative electrolysis of particles of up to ∼800 nm in radius. Interestingly, we find that interactions between neighboring pendants create unique opportunities for fine-tuning their electrochemical reactivity. Furthermore, RAP interrogation toward the single particle limit promises to shed light on fundamental charge storage mechanisms." @default.
- W2525979153 created "2016-10-07" @default.
- W2525979153 creator A5007986677 @default.
- W2525979153 creator A5036661596 @default.
- W2525979153 creator A5082797451 @default.
- W2525979153 date "2016-09-27" @default.
- W2525979153 modified "2023-10-16" @default.
- W2525979153 title "Redox Active Polymers as Soluble Nanomaterials for Energy Storage" @default.
- W2525979153 cites W1967882192 @default.
- W2525979153 cites W1968411365 @default.
- W2525979153 cites W1991680958 @default.
- W2525979153 cites W2001231426 @default.
- W2525979153 cites W2041278780 @default.
- W2525979153 cites W2046753790 @default.
- W2525979153 cites W2055313586 @default.
- W2525979153 cites W2057961630 @default.
- W2525979153 cites W2065502908 @default.
- W2525979153 cites W2065510206 @default.
- W2525979153 cites W2080902624 @default.
- W2525979153 cites W2082407192 @default.
- W2525979153 cites W2083554546 @default.
- W2525979153 cites W2089525884 @default.
- W2525979153 cites W2095020830 @default.
- W2525979153 cites W2114733404 @default.
- W2525979153 cites W2115269477 @default.
- W2525979153 cites W2115803851 @default.
- W2525979153 cites W2125661173 @default.
- W2525979153 cites W2129489928 @default.
- W2525979153 cites W2135999176 @default.
- W2525979153 cites W2142841029 @default.
- W2525979153 cites W2149102577 @default.
- W2525979153 cites W2167560273 @default.
- W2525979153 cites W2178032561 @default.
- W2525979153 cites W2191488834 @default.
- W2525979153 cites W2203423153 @default.
- W2525979153 cites W2275045402 @default.
- W2525979153 cites W2314736294 @default.
- W2525979153 cites W2317951015 @default.
- W2525979153 cites W2333776321 @default.
- W2525979153 cites W2334859939 @default.
- W2525979153 cites W2336569366 @default.
- W2525979153 cites W2338789940 @default.
- W2525979153 cites W2520724989 @default.
- W2525979153 cites W3004697467 @default.
- W2525979153 cites W4247272913 @default.
- W2525979153 doi "https://doi.org/10.1021/acs.accounts.6b00341" @default.
- W2525979153 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27673336" @default.
- W2525979153 hasPublicationYear "2016" @default.
- W2525979153 type Work @default.
- W2525979153 sameAs 2525979153 @default.
- W2525979153 citedByCount "112" @default.
- W2525979153 countsByYear W25259791532017 @default.
- W2525979153 countsByYear W25259791532018 @default.
- W2525979153 countsByYear W25259791532019 @default.
- W2525979153 countsByYear W25259791532020 @default.
- W2525979153 countsByYear W25259791532021 @default.
- W2525979153 countsByYear W25259791532022 @default.
- W2525979153 countsByYear W25259791532023 @default.
- W2525979153 crossrefType "journal-article" @default.
- W2525979153 hasAuthorship W2525979153A5007986677 @default.
- W2525979153 hasAuthorship W2525979153A5036661596 @default.
- W2525979153 hasAuthorship W2525979153A5082797451 @default.
- W2525979153 hasConcept C121332964 @default.
- W2525979153 hasConcept C138631740 @default.
- W2525979153 hasConcept C147789679 @default.
- W2525979153 hasConcept C153465999 @default.
- W2525979153 hasConcept C163258240 @default.
- W2525979153 hasConcept C171250308 @default.
- W2525979153 hasConcept C17525397 @default.
- W2525979153 hasConcept C178790620 @default.
- W2525979153 hasConcept C179104552 @default.
- W2525979153 hasConcept C185592680 @default.
- W2525979153 hasConcept C192562407 @default.
- W2525979153 hasConcept C21951064 @default.
- W2525979153 hasConcept C2993969710 @default.
- W2525979153 hasConcept C41008148 @default.
- W2525979153 hasConcept C48940184 @default.
- W2525979153 hasConcept C521977710 @default.
- W2525979153 hasConcept C52859227 @default.
- W2525979153 hasConcept C55904794 @default.
- W2525979153 hasConcept C62520636 @default.
- W2525979153 hasConcept C6585489 @default.
- W2525979153 hasConcept C68801617 @default.
- W2525979153 hasConcept C73916439 @default.
- W2525979153 hasConceptScore W2525979153C121332964 @default.
- W2525979153 hasConceptScore W2525979153C138631740 @default.
- W2525979153 hasConceptScore W2525979153C147789679 @default.
- W2525979153 hasConceptScore W2525979153C153465999 @default.
- W2525979153 hasConceptScore W2525979153C163258240 @default.
- W2525979153 hasConceptScore W2525979153C171250308 @default.
- W2525979153 hasConceptScore W2525979153C17525397 @default.
- W2525979153 hasConceptScore W2525979153C178790620 @default.
- W2525979153 hasConceptScore W2525979153C179104552 @default.
- W2525979153 hasConceptScore W2525979153C185592680 @default.
- W2525979153 hasConceptScore W2525979153C192562407 @default.
- W2525979153 hasConceptScore W2525979153C21951064 @default.
- W2525979153 hasConceptScore W2525979153C2993969710 @default.
- W2525979153 hasConceptScore W2525979153C41008148 @default.