Matches in SemOpenAlex for { <https://semopenalex.org/work/W2526177130> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2526177130 endingPage "86" @default.
- W2526177130 startingPage "78" @default.
- W2526177130 abstract "In this paper, novel cost-sensitive principal component analysis (CSPCA) and cost-sensitive non-negative matrix factorization (CSNMF) methods are proposed for handling the problem of feature extraction from imbalanced data. The presence of highly imbalanced data misleads existing feature extraction techniques to produce biased features, which results in poor classification performance especially for the minor class problem. To solve this problem, we propose a cost-sensitive learning strategy for feature extraction techniques that uses the imbalance ratio of classes to discount the majority samples. This strategy is adapted to the popular feature extraction methods such as PCA and NMF. The main advantage of the proposed methods is that they are able to lessen the inherent bias of the extracted features to the majority class in existing PCA and NMF algorithms. Experiments on twelve public datasets with different levels of imbalance ratios show that the proposed methods outperformed the state-of-the-art methods on multiple classifiers." @default.
- W2526177130 created "2016-10-07" @default.
- W2526177130 creator A5023107987 @default.
- W2526177130 creator A5071037763 @default.
- W2526177130 creator A5080194823 @default.
- W2526177130 date "2016-01-01" @default.
- W2526177130 modified "2023-10-18" @default.
- W2526177130 title "A Cost-Sensitive Learning Strategy for Feature Extraction from Imbalanced Data" @default.
- W2526177130 cites W1635138928 @default.
- W2526177130 cites W2021064404 @default.
- W2526177130 cites W2135463994 @default.
- W2526177130 cites W2147010252 @default.
- W2526177130 cites W2148102854 @default.
- W2526177130 cites W2398823278 @default.
- W2526177130 cites W3034271075 @default.
- W2526177130 doi "https://doi.org/10.1007/978-3-319-46675-0_9" @default.
- W2526177130 hasPublicationYear "2016" @default.
- W2526177130 type Work @default.
- W2526177130 sameAs 2526177130 @default.
- W2526177130 citedByCount "20" @default.
- W2526177130 countsByYear W25261771302017 @default.
- W2526177130 countsByYear W25261771302018 @default.
- W2526177130 countsByYear W25261771302019 @default.
- W2526177130 countsByYear W25261771302020 @default.
- W2526177130 countsByYear W25261771302021 @default.
- W2526177130 countsByYear W25261771302022 @default.
- W2526177130 countsByYear W25261771302023 @default.
- W2526177130 crossrefType "book-chapter" @default.
- W2526177130 hasAuthorship W2526177130A5023107987 @default.
- W2526177130 hasAuthorship W2526177130A5071037763 @default.
- W2526177130 hasAuthorship W2526177130A5080194823 @default.
- W2526177130 hasBestOaLocation W25261771302 @default.
- W2526177130 hasConcept C119857082 @default.
- W2526177130 hasConcept C138885662 @default.
- W2526177130 hasConcept C153180895 @default.
- W2526177130 hasConcept C154945302 @default.
- W2526177130 hasConcept C2776401178 @default.
- W2526177130 hasConcept C41008148 @default.
- W2526177130 hasConcept C41895202 @default.
- W2526177130 hasConcept C52622490 @default.
- W2526177130 hasConceptScore W2526177130C119857082 @default.
- W2526177130 hasConceptScore W2526177130C138885662 @default.
- W2526177130 hasConceptScore W2526177130C153180895 @default.
- W2526177130 hasConceptScore W2526177130C154945302 @default.
- W2526177130 hasConceptScore W2526177130C2776401178 @default.
- W2526177130 hasConceptScore W2526177130C41008148 @default.
- W2526177130 hasConceptScore W2526177130C41895202 @default.
- W2526177130 hasConceptScore W2526177130C52622490 @default.
- W2526177130 hasLocation W25261771301 @default.
- W2526177130 hasLocation W25261771302 @default.
- W2526177130 hasOpenAccess W2526177130 @default.
- W2526177130 hasPrimaryLocation W25261771301 @default.
- W2526177130 hasRelatedWork W1964120219 @default.
- W2526177130 hasRelatedWork W2016461833 @default.
- W2526177130 hasRelatedWork W2131735617 @default.
- W2526177130 hasRelatedWork W2136054869 @default.
- W2526177130 hasRelatedWork W2144059113 @default.
- W2526177130 hasRelatedWork W2146076056 @default.
- W2526177130 hasRelatedWork W2382607599 @default.
- W2526177130 hasRelatedWork W2811390910 @default.
- W2526177130 hasRelatedWork W3003836766 @default.
- W2526177130 hasRelatedWork W3197541072 @default.
- W2526177130 isParatext "false" @default.
- W2526177130 isRetracted "false" @default.
- W2526177130 magId "2526177130" @default.
- W2526177130 workType "book-chapter" @default.