Matches in SemOpenAlex for { <https://semopenalex.org/work/W2526735666> ?p ?o ?g. }
- W2526735666 endingPage "1818" @default.
- W2526735666 startingPage "1800" @default.
- W2526735666 abstract "We address the question of quantifying uncertainty associated with autogenic pattern variability in a channelized transport system by means of a modern geostatistical method. This question has considerable relevance for practical subsurface applications as well, particularly those related to uncertainty quantification relying on Bayesian approaches. Specifically, we show how the autogenic variability in a laboratory experiment can be represented and reproduced by a multiple-point geostatistical prior uncertainty model. The latter geostatistical method requires selection of a limited set of training images from which a possibly infinite set of geostatistical model realizations, mimicking the training image patterns, can be generated. To that end, we investigate two methods to determine how many training images and what training images should be provided to reproduce natural autogenic variability. The first method relies on distance-based clustering of overhead snapshots of the experiment; the second method relies on a rate of change quantification by means of a computer vision algorithm termed the demon algorithm. We show quantitatively that with either training image selection method, we can statistically reproduce the natural variability of the delta formed in the experiment. In addition, we study the nature of the patterns represented in the set of training images as a representation of the “eigenpatterns” of the natural system. The eigenpattern in the training image sets display patterns consistent with previous physical interpretations of the fundamental modes of this type of delta system: a highly channelized, incisional mode; a poorly channelized, depositional mode; and an intermediate mode between the two." @default.
- W2526735666 created "2016-10-07" @default.
- W2526735666 creator A5001828028 @default.
- W2526735666 creator A5005286012 @default.
- W2526735666 creator A5011847078 @default.
- W2526735666 creator A5028020443 @default.
- W2526735666 date "2016-10-01" @default.
- W2526735666 modified "2023-10-10" @default.
- W2526735666 title "Quantifying natural delta variability using a multiple-point geostatistics prior uncertainty model" @default.
- W2526735666 cites W1451106714 @default.
- W2526735666 cites W1499512010 @default.
- W2526735666 cites W1537810918 @default.
- W2526735666 cites W1567885833 @default.
- W2526735666 cites W1582591394 @default.
- W2526735666 cites W1821143250 @default.
- W2526735666 cites W1913583969 @default.
- W2526735666 cites W1968684875 @default.
- W2526735666 cites W1968802878 @default.
- W2526735666 cites W1973397550 @default.
- W2526735666 cites W1975862709 @default.
- W2526735666 cites W1979406450 @default.
- W2526735666 cites W1987971958 @default.
- W2526735666 cites W1988228951 @default.
- W2526735666 cites W1994508778 @default.
- W2526735666 cites W1995875735 @default.
- W2526735666 cites W2008933362 @default.
- W2526735666 cites W2032736720 @default.
- W2526735666 cites W2035334832 @default.
- W2526735666 cites W2038608287 @default.
- W2526735666 cites W2038648432 @default.
- W2526735666 cites W2053329537 @default.
- W2526735666 cites W2107105977 @default.
- W2526735666 cites W2116773294 @default.
- W2526735666 cites W2227613468 @default.
- W2526735666 cites W2328207415 @default.
- W2526735666 cites W240582380 @default.
- W2526735666 cites W2406470551 @default.
- W2526735666 cites W2475941950 @default.
- W2526735666 cites W4205380271 @default.
- W2526735666 cites W4230588984 @default.
- W2526735666 cites W4230900352 @default.
- W2526735666 cites W4299551239 @default.
- W2526735666 cites W4301347335 @default.
- W2526735666 doi "https://doi.org/10.1002/2016jf003922" @default.
- W2526735666 hasPublicationYear "2016" @default.
- W2526735666 type Work @default.
- W2526735666 sameAs 2526735666 @default.
- W2526735666 citedByCount "17" @default.
- W2526735666 countsByYear W25267356662018 @default.
- W2526735666 countsByYear W25267356662019 @default.
- W2526735666 countsByYear W25267356662020 @default.
- W2526735666 countsByYear W25267356662021 @default.
- W2526735666 countsByYear W25267356662022 @default.
- W2526735666 countsByYear W25267356662023 @default.
- W2526735666 crossrefType "journal-article" @default.
- W2526735666 hasAuthorship W2526735666A5001828028 @default.
- W2526735666 hasAuthorship W2526735666A5005286012 @default.
- W2526735666 hasAuthorship W2526735666A5011847078 @default.
- W2526735666 hasAuthorship W2526735666A5028020443 @default.
- W2526735666 hasBestOaLocation W25267356661 @default.
- W2526735666 hasConcept C105795698 @default.
- W2526735666 hasConcept C107673813 @default.
- W2526735666 hasConcept C11413529 @default.
- W2526735666 hasConcept C124101348 @default.
- W2526735666 hasConcept C125572338 @default.
- W2526735666 hasConcept C153180895 @default.
- W2526735666 hasConcept C154945302 @default.
- W2526735666 hasConcept C177264268 @default.
- W2526735666 hasConcept C17744445 @default.
- W2526735666 hasConcept C199360897 @default.
- W2526735666 hasConcept C199539241 @default.
- W2526735666 hasConcept C2776359362 @default.
- W2526735666 hasConcept C33923547 @default.
- W2526735666 hasConcept C41008148 @default.
- W2526735666 hasConcept C51889082 @default.
- W2526735666 hasConcept C73555534 @default.
- W2526735666 hasConcept C76155785 @default.
- W2526735666 hasConcept C81917197 @default.
- W2526735666 hasConcept C94625758 @default.
- W2526735666 hasConcept C94747663 @default.
- W2526735666 hasConceptScore W2526735666C105795698 @default.
- W2526735666 hasConceptScore W2526735666C107673813 @default.
- W2526735666 hasConceptScore W2526735666C11413529 @default.
- W2526735666 hasConceptScore W2526735666C124101348 @default.
- W2526735666 hasConceptScore W2526735666C125572338 @default.
- W2526735666 hasConceptScore W2526735666C153180895 @default.
- W2526735666 hasConceptScore W2526735666C154945302 @default.
- W2526735666 hasConceptScore W2526735666C177264268 @default.
- W2526735666 hasConceptScore W2526735666C17744445 @default.
- W2526735666 hasConceptScore W2526735666C199360897 @default.
- W2526735666 hasConceptScore W2526735666C199539241 @default.
- W2526735666 hasConceptScore W2526735666C2776359362 @default.
- W2526735666 hasConceptScore W2526735666C33923547 @default.
- W2526735666 hasConceptScore W2526735666C41008148 @default.
- W2526735666 hasConceptScore W2526735666C51889082 @default.
- W2526735666 hasConceptScore W2526735666C73555534 @default.
- W2526735666 hasConceptScore W2526735666C76155785 @default.
- W2526735666 hasConceptScore W2526735666C81917197 @default.