Matches in SemOpenAlex for { <https://semopenalex.org/work/W2527215258> ?p ?o ?g. }
- W2527215258 endingPage "2986" @default.
- W2527215258 startingPage "2967" @default.
- W2527215258 abstract "Abstract. A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. Numerous studies have shown that ensemble forecasts are of higher quality than deterministic ones. Many studies also conclude that decisions based on ensemble rather than deterministic forecasts lead to better decisions in the context of flood mitigation. Hence, it is believed that ensemble forecasts possess a greater economic and social value for both decision makers and the general population. However, the vast majority of, if not all, existing hydro-economic studies rely on a cost–loss ratio framework that assumes a risk-neutral decision maker. To overcome this important flaw, this study borrows from economics and evaluates the economic value of early warning flood systems using the well-known Constant Absolute Risk Aversion (CARA) utility function, which explicitly accounts for the level of risk aversion of the decision maker. This new framework allows for the full exploitation of the information related to a forecasts' uncertainty, making it especially suited for the economic assessment of ensemble or probabilistic forecasts. Rather than comparing deterministic and ensemble forecasts, this study focuses on comparing different types of ensemble forecasts. There are multiple ways of assessing and representing forecast uncertainty. Consequently, there exist many different means of building an ensemble forecasting system for future streamflow. One such possibility is to dress deterministic forecasts using the statistics of past error forecasts. Such dressing methods are popular among operational agencies because of their simplicity and intuitiveness. Another approach is the use of ensemble meteorological forecasts for precipitation and temperature, which are then provided as inputs to one or many hydrological model(s). In this study, three concurrent ensemble streamflow forecasting systems are compared: simple statistically dressed deterministic forecasts, forecasts based on meteorological ensembles, and a variant of the latter that also includes an estimation of state variable uncertainty. This comparison takes place for the Montmorency River, a small flood-prone watershed in southern central Quebec, Canada. The assessment of forecasts is performed for lead times of 1 to 5 days, both in terms of forecasts' quality (relative to the corresponding record of observations) and in terms of economic value, using the new proposed framework based on the CARA utility function. It is found that the economic value of a forecast for a risk-averse decision maker is closely linked to the forecast reliability in predicting the upper tail of the streamflow distribution. Hence, post-processing forecasts to avoid over-forecasting could help improve both the quality and the value of forecasts." @default.
- W2527215258 created "2016-10-07" @default.
- W2527215258 creator A5034527053 @default.
- W2527215258 creator A5043539530 @default.
- W2527215258 creator A5044685375 @default.
- W2527215258 creator A5073566252 @default.
- W2527215258 date "2017-06-19" @default.
- W2527215258 modified "2023-10-10" @default.
- W2527215258 title "Moving beyond the cost–loss ratio: economic assessment of streamflow forecasts for a risk-averse decision maker" @default.
- W2527215258 cites W1505911477 @default.
- W2527215258 cites W1687475051 @default.
- W2527215258 cites W1863860359 @default.
- W2527215258 cites W1972764027 @default.
- W2527215258 cites W1984113680 @default.
- W2527215258 cites W1993369765 @default.
- W2527215258 cites W1995118028 @default.
- W2527215258 cites W1999488283 @default.
- W2527215258 cites W2005228743 @default.
- W2527215258 cites W2009104157 @default.
- W2527215258 cites W2010275421 @default.
- W2527215258 cites W2012413692 @default.
- W2527215258 cites W2012667155 @default.
- W2527215258 cites W2017265688 @default.
- W2527215258 cites W2032137277 @default.
- W2527215258 cites W2033859822 @default.
- W2527215258 cites W2035759606 @default.
- W2527215258 cites W2036852722 @default.
- W2527215258 cites W2038984009 @default.
- W2527215258 cites W2043685855 @default.
- W2527215258 cites W2058208658 @default.
- W2527215258 cites W2060319384 @default.
- W2527215258 cites W2060742029 @default.
- W2527215258 cites W2063398787 @default.
- W2527215258 cites W2068732663 @default.
- W2527215258 cites W2096581740 @default.
- W2527215258 cites W2098616741 @default.
- W2527215258 cites W2100930251 @default.
- W2527215258 cites W2115542045 @default.
- W2527215258 cites W2122315938 @default.
- W2527215258 cites W2132504853 @default.
- W2527215258 cites W2137442085 @default.
- W2527215258 cites W2142328903 @default.
- W2527215258 cites W2154732954 @default.
- W2527215258 cites W2158779733 @default.
- W2527215258 cites W2162345558 @default.
- W2527215258 cites W2165848506 @default.
- W2527215258 cites W2177545482 @default.
- W2527215258 cites W2527527955 @default.
- W2527215258 cites W2625061466 @default.
- W2527215258 cites W3122693283 @default.
- W2527215258 cites W4254038944 @default.
- W2527215258 doi "https://doi.org/10.5194/hess-21-2967-2017" @default.
- W2527215258 hasPublicationYear "2017" @default.
- W2527215258 type Work @default.
- W2527215258 sameAs 2527215258 @default.
- W2527215258 citedByCount "19" @default.
- W2527215258 countsByYear W25272152582017 @default.
- W2527215258 countsByYear W25272152582018 @default.
- W2527215258 countsByYear W25272152582019 @default.
- W2527215258 countsByYear W25272152582020 @default.
- W2527215258 countsByYear W25272152582021 @default.
- W2527215258 countsByYear W25272152582022 @default.
- W2527215258 countsByYear W25272152582023 @default.
- W2527215258 crossrefType "journal-article" @default.
- W2527215258 hasAuthorship W2527215258A5034527053 @default.
- W2527215258 hasAuthorship W2527215258A5043539530 @default.
- W2527215258 hasAuthorship W2527215258A5044685375 @default.
- W2527215258 hasAuthorship W2527215258A5073566252 @default.
- W2527215258 hasBestOaLocation W25272152581 @default.
- W2527215258 hasConcept C105795698 @default.
- W2527215258 hasConcept C119898033 @default.
- W2527215258 hasConcept C120954023 @default.
- W2527215258 hasConcept C126645576 @default.
- W2527215258 hasConcept C129915516 @default.
- W2527215258 hasConcept C138885662 @default.
- W2527215258 hasConcept C144024400 @default.
- W2527215258 hasConcept C149782125 @default.
- W2527215258 hasConcept C149923435 @default.
- W2527215258 hasConcept C151730666 @default.
- W2527215258 hasConcept C154945302 @default.
- W2527215258 hasConcept C162118730 @default.
- W2527215258 hasConcept C162324750 @default.
- W2527215258 hasConcept C205649164 @default.
- W2527215258 hasConcept C205706631 @default.
- W2527215258 hasConcept C27206212 @default.
- W2527215258 hasConcept C2779343474 @default.
- W2527215258 hasConcept C2908647359 @default.
- W2527215258 hasConcept C33923547 @default.
- W2527215258 hasConcept C41008148 @default.
- W2527215258 hasConcept C49937458 @default.
- W2527215258 hasConcept C53739315 @default.
- W2527215258 hasConcept C58640448 @default.
- W2527215258 hasConcept C74256435 @default.
- W2527215258 hasConcept C86803240 @default.
- W2527215258 hasConceptScore W2527215258C105795698 @default.
- W2527215258 hasConceptScore W2527215258C119898033 @default.
- W2527215258 hasConceptScore W2527215258C120954023 @default.
- W2527215258 hasConceptScore W2527215258C126645576 @default.