Matches in SemOpenAlex for { <https://semopenalex.org/work/W2527427072> ?p ?o ?g. }
- W2527427072 abstract "Purpose Recently, the original Wavenumber approach was introduced for dynamic analysis of dam-reservoir systems in frequency domain in the context of pure finite element programming. But its main disadvantages are that it cannot be implemented in time domain. The purpose of this paper is to propose an approximation to the original approach which enables one to carry out this effective method in time domain as well as in frequency domain. Based on the present investigation, it is proven that the Approximate Wavenumber approach has inherent characteristics, which allows it to be envisaged as an effective technique for calculating the response of concrete gravity dam-reservoir systems in time domain. Design/methodology/approach The method is described initially. Subsequently, the response of an idealized triangular dam-reservoir system is obtained by the proposed approach as well as by applying two other well-known absorbing conditions which are widely utilized in practice. The results are also controlled against the corresponding exact responses. It should be emphasized that all results presented herein are obtained by the FE-FE method under different absorbing conditions applied on the truncation boundary. These include two well-known absorbing conditions referred to as Sommerfeld and Sharan as well as the proposed approach of the present study (i.e. Approximate Wavenumber condition). Findings It is concluded that the maximum error for the Approximate Wavenumber approach is in the range of 10 percent at the major peaks of the response. This occurs mainly for the very low reservoir lengths under full reflective reservoir base condition and vertical excitation. This is a remarkable result for any kind of robust truncation boundary simulation that one may expect. The fundamental frequency of the system is captured correctly for the Approximate Wavenumber approach, even in cases of low reservoir length. Originality/value Based on this investigation, it is proven that the Approximate Wavenumber approach has inherent characteristics, which allows it to be envisaged as an effective technique for calculating the response of concrete gravity dam-reservoir systems in time domain. It is concluded that the maximum error for the Approximate Wavenumber approach is in the range of 10 percent at the major peaks of the response. This occurs mainly for the very low reservoir lengths under full reflective reservoir base condition and vertical excitation. This is a remarkable result for any kind of robust truncation boundary simulation that one may expect." @default.
- W2527427072 created "2016-10-07" @default.
- W2527427072 creator A5012266747 @default.
- W2527427072 creator A5036146491 @default.
- W2527427072 date "2016-10-03" @default.
- W2527427072 modified "2023-09-26" @default.
- W2527427072 title "Dynamic analysis of concrete gravity dam-reservoir systems by approximate wavenumber approach" @default.
- W2527427072 cites W1969524319 @default.
- W2527427072 cites W1974624164 @default.
- W2527427072 cites W1980525747 @default.
- W2527427072 cites W1985738026 @default.
- W2527427072 cites W1994751539 @default.
- W2527427072 cites W2003017040 @default.
- W2527427072 cites W2031406252 @default.
- W2527427072 cites W2048106448 @default.
- W2527427072 cites W2089131646 @default.
- W2527427072 cites W2091729637 @default.
- W2527427072 cites W2103198257 @default.
- W2527427072 cites W2125791194 @default.
- W2527427072 cites W2133594494 @default.
- W2527427072 cites W2134672263 @default.
- W2527427072 doi "https://doi.org/10.1108/ec-07-2015-0207" @default.
- W2527427072 hasPublicationYear "2016" @default.
- W2527427072 type Work @default.
- W2527427072 sameAs 2527427072 @default.
- W2527427072 citedByCount "1" @default.
- W2527427072 countsByYear W25274270722017 @default.
- W2527427072 crossrefType "journal-article" @default.
- W2527427072 hasAuthorship W2527427072A5012266747 @default.
- W2527427072 hasAuthorship W2527427072A5036146491 @default.
- W2527427072 hasConcept C103824480 @default.
- W2527427072 hasConcept C104942944 @default.
- W2527427072 hasConcept C105795698 @default.
- W2527427072 hasConcept C106195933 @default.
- W2527427072 hasConcept C120665830 @default.
- W2527427072 hasConcept C121130766 @default.
- W2527427072 hasConcept C121332964 @default.
- W2527427072 hasConcept C127313418 @default.
- W2527427072 hasConcept C127413603 @default.
- W2527427072 hasConcept C134306372 @default.
- W2527427072 hasConcept C135628077 @default.
- W2527427072 hasConcept C151730666 @default.
- W2527427072 hasConcept C182310444 @default.
- W2527427072 hasConcept C19118579 @default.
- W2527427072 hasConcept C2779318173 @default.
- W2527427072 hasConcept C2779343474 @default.
- W2527427072 hasConcept C28826006 @default.
- W2527427072 hasConcept C31972630 @default.
- W2527427072 hasConcept C33923547 @default.
- W2527427072 hasConcept C36503486 @default.
- W2527427072 hasConcept C41008148 @default.
- W2527427072 hasConcept C62354387 @default.
- W2527427072 hasConcept C66938386 @default.
- W2527427072 hasConceptScore W2527427072C103824480 @default.
- W2527427072 hasConceptScore W2527427072C104942944 @default.
- W2527427072 hasConceptScore W2527427072C105795698 @default.
- W2527427072 hasConceptScore W2527427072C106195933 @default.
- W2527427072 hasConceptScore W2527427072C120665830 @default.
- W2527427072 hasConceptScore W2527427072C121130766 @default.
- W2527427072 hasConceptScore W2527427072C121332964 @default.
- W2527427072 hasConceptScore W2527427072C127313418 @default.
- W2527427072 hasConceptScore W2527427072C127413603 @default.
- W2527427072 hasConceptScore W2527427072C134306372 @default.
- W2527427072 hasConceptScore W2527427072C135628077 @default.
- W2527427072 hasConceptScore W2527427072C151730666 @default.
- W2527427072 hasConceptScore W2527427072C182310444 @default.
- W2527427072 hasConceptScore W2527427072C19118579 @default.
- W2527427072 hasConceptScore W2527427072C2779318173 @default.
- W2527427072 hasConceptScore W2527427072C2779343474 @default.
- W2527427072 hasConceptScore W2527427072C28826006 @default.
- W2527427072 hasConceptScore W2527427072C31972630 @default.
- W2527427072 hasConceptScore W2527427072C33923547 @default.
- W2527427072 hasConceptScore W2527427072C36503486 @default.
- W2527427072 hasConceptScore W2527427072C41008148 @default.
- W2527427072 hasConceptScore W2527427072C62354387 @default.
- W2527427072 hasConceptScore W2527427072C66938386 @default.
- W2527427072 hasLocation W25274270721 @default.
- W2527427072 hasOpenAccess W2527427072 @default.
- W2527427072 hasPrimaryLocation W25274270721 @default.
- W2527427072 hasRelatedWork W1652870520 @default.
- W2527427072 hasRelatedWork W1975809140 @default.
- W2527427072 hasRelatedWork W1991890215 @default.
- W2527427072 hasRelatedWork W2000391277 @default.
- W2527427072 hasRelatedWork W2025930374 @default.
- W2527427072 hasRelatedWork W2045332932 @default.
- W2527427072 hasRelatedWork W2050917866 @default.
- W2527427072 hasRelatedWork W2053695519 @default.
- W2527427072 hasRelatedWork W2057635836 @default.
- W2527427072 hasRelatedWork W2078255082 @default.
- W2527427072 hasRelatedWork W2097633488 @default.
- W2527427072 hasRelatedWork W2119103839 @default.
- W2527427072 hasRelatedWork W2122102192 @default.
- W2527427072 hasRelatedWork W2132831813 @default.
- W2527427072 hasRelatedWork W2166953036 @default.
- W2527427072 hasRelatedWork W2332626524 @default.
- W2527427072 hasRelatedWork W649738411 @default.
- W2527427072 hasRelatedWork W801679908 @default.
- W2527427072 hasRelatedWork W811018999 @default.
- W2527427072 hasRelatedWork W955490993 @default.
- W2527427072 isParatext "false" @default.