Matches in SemOpenAlex for { <https://semopenalex.org/work/W2527654160> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2527654160 endingPage "114" @default.
- W2527654160 startingPage "106" @default.
- W2527654160 abstract "The classification of breast masses from mammograms into benign or malignant has been commonly addressed with machine learning classifiers that use as input a large set of hand-crafted features, usually based on general geometrical and texture information. In this paper, we propose a novel deep learning method that automatically learns features based directly on the optmisation of breast mass classification from mammograms, where we target an improved classification performance compared to the approach described above. The novelty of our approach lies in the two-step training process that involves a pre-training based on the learning of a regressor that estimates the values of a large set of hand-crafted features, followed by a fine-tuning stage that learns the breast mass classifier. Using the publicly available INbreast dataset, we show that the proposed method produces better classification results, compared with the machine learning model using hand-crafted features and with deep learning method trained directly for the classification stage without the pre-training stage. We also show that the proposed method produces the current state-of-the-art breast mass classification results for the INbreast dataset. Finally, we integrate the proposed classifier into a fully automated breast mass detection and segmentation, which shows promising results." @default.
- W2527654160 created "2016-10-07" @default.
- W2527654160 creator A5029215323 @default.
- W2527654160 creator A5042053820 @default.
- W2527654160 creator A5067912169 @default.
- W2527654160 date "2016-01-01" @default.
- W2527654160 modified "2023-10-16" @default.
- W2527654160 title "The Automated Learning of Deep Features for Breast Mass Classification from Mammograms" @default.
- W2527654160 cites W1982981565 @default.
- W2527654160 cites W2022508996 @default.
- W2527654160 cites W2030069582 @default.
- W2527654160 cites W2116288467 @default.
- W2527654160 cites W2133923351 @default.
- W2527654160 cites W2148516878 @default.
- W2527654160 cites W2216351247 @default.
- W2527654160 cites W2240965754 @default.
- W2527654160 cites W2294923432 @default.
- W2527654160 cites W2911964244 @default.
- W2527654160 cites W304373761 @default.
- W2527654160 doi "https://doi.org/10.1007/978-3-319-46723-8_13" @default.
- W2527654160 hasPublicationYear "2016" @default.
- W2527654160 type Work @default.
- W2527654160 sameAs 2527654160 @default.
- W2527654160 citedByCount "78" @default.
- W2527654160 countsByYear W25276541602016 @default.
- W2527654160 countsByYear W25276541602017 @default.
- W2527654160 countsByYear W25276541602018 @default.
- W2527654160 countsByYear W25276541602019 @default.
- W2527654160 countsByYear W25276541602020 @default.
- W2527654160 countsByYear W25276541602021 @default.
- W2527654160 countsByYear W25276541602022 @default.
- W2527654160 countsByYear W25276541602023 @default.
- W2527654160 crossrefType "book-chapter" @default.
- W2527654160 hasAuthorship W2527654160A5029215323 @default.
- W2527654160 hasAuthorship W2527654160A5042053820 @default.
- W2527654160 hasAuthorship W2527654160A5067912169 @default.
- W2527654160 hasConcept C108583219 @default.
- W2527654160 hasConcept C119857082 @default.
- W2527654160 hasConcept C121608353 @default.
- W2527654160 hasConcept C126322002 @default.
- W2527654160 hasConcept C153180895 @default.
- W2527654160 hasConcept C154945302 @default.
- W2527654160 hasConcept C2780472235 @default.
- W2527654160 hasConcept C41008148 @default.
- W2527654160 hasConcept C530470458 @default.
- W2527654160 hasConcept C71924100 @default.
- W2527654160 hasConcept C89600930 @default.
- W2527654160 hasConcept C95623464 @default.
- W2527654160 hasConceptScore W2527654160C108583219 @default.
- W2527654160 hasConceptScore W2527654160C119857082 @default.
- W2527654160 hasConceptScore W2527654160C121608353 @default.
- W2527654160 hasConceptScore W2527654160C126322002 @default.
- W2527654160 hasConceptScore W2527654160C153180895 @default.
- W2527654160 hasConceptScore W2527654160C154945302 @default.
- W2527654160 hasConceptScore W2527654160C2780472235 @default.
- W2527654160 hasConceptScore W2527654160C41008148 @default.
- W2527654160 hasConceptScore W2527654160C530470458 @default.
- W2527654160 hasConceptScore W2527654160C71924100 @default.
- W2527654160 hasConceptScore W2527654160C89600930 @default.
- W2527654160 hasConceptScore W2527654160C95623464 @default.
- W2527654160 hasLocation W25276541601 @default.
- W2527654160 hasOpenAccess W2527654160 @default.
- W2527654160 hasPrimaryLocation W25276541601 @default.
- W2527654160 hasRelatedWork W2790662084 @default.
- W2527654160 hasRelatedWork W3014300295 @default.
- W2527654160 hasRelatedWork W3164822677 @default.
- W2527654160 hasRelatedWork W4223943233 @default.
- W2527654160 hasRelatedWork W4225161397 @default.
- W2527654160 hasRelatedWork W4312200629 @default.
- W2527654160 hasRelatedWork W4360585206 @default.
- W2527654160 hasRelatedWork W4364306694 @default.
- W2527654160 hasRelatedWork W4380075502 @default.
- W2527654160 hasRelatedWork W4380086463 @default.
- W2527654160 isParatext "false" @default.
- W2527654160 isRetracted "false" @default.
- W2527654160 magId "2527654160" @default.
- W2527654160 workType "book-chapter" @default.